Designing Arterials for Safe Speeds

Aaron Villere Program Associate, Designing Cities Initiative NACTO

January 7, 2018

Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey

	Estimated (Based on 94% of the NMVCCS crashes)		
Critical Reason	Number	Percentage* ± 95% conf. limits	
Recognition Error	845,000	41% ±2.2%	
Decision Error	684,000	33% ±3.7%	
Performance Error	210,000	11% ±2.7%	
Non-Performance Error (sleep, etc.)	145,000	7% ±1.0%	
Other	162,000	8% ±1.9%	
Total	2,046,000	100%	

"The critical reason was assigned to the driver in an estimated **94%** of crashes."

Speed is the problem.

Vehicle Speed increases Risk

Pedestrian Fatality / Severe Injury Risk

Tefft (AAA Foundation), 2011

Speed reduces recognition.

Speed reduces recognition.

Speed extends stop distance.

Speed extends stop distance.

While all fatalities are rising...

50.0%									
40.0% -									
30.0%									
20.0% -									
10.0%									
0.0% -									-
-10.0%	2009	2010	2011	2012	2013	2014	2015	2016	

NHTSA, 2017

NHTSA, 2017

Auto-Centric Design ≠ Safety

Really?

NYC DOT

GH15VIA HOODHAVN B

New York Sightsee

Sightseeing and Cl Information: 1-800-669-005

Risk to people walking & biking is systemic.

BE

Dangerous by Design, National Complete Streets Coalition

Most (non-freeway) traffic fatalities...

... are on a small % of streets

FARS data (NHTSA), 2016

We need to <u>proactively</u> design streets for safe speed.

Passive Approach

Operating Speed → Design Speed → Posted Speed

Observed Operating Speed

Design Speed

35mph

35mph

35mph

Passive Approach

▶ Operating Speed → Design Speed → Posted Speed →

Rainier Ave, Seattle

11 11

Location	Speeders	High-End Speeders
Northbound	84%	4%
Southbound	82%	6%

Proactive Approach

Target Speed Design Speed Posted Speed

Rainier Ave, Seattle

Location	Change: Speeders	Change: High-End
Northbound	-52%	-81%
Southbound	-28%	-73%

SPEED LIMIT 25

Rainer Aw

Seattle DOT

Rainier Ave, Seattle

<u>Before:</u> 9 injury crashes per year

After: O injury crashes in 2016

Seattle DOT

How can proactive street design reinforce safe speed?

Design Toolbox

Reinforcing Target Speed

- Don't overbuild for vehicle capacity
- Don't overbuild for large, infrequent vehicles
- Use signals to manage speed(ing)
- Provide comfortable and efficient multi-modal facilities

Design for all day, not just peak hour.

Peak Hour Design

"in urban design, the 30th highest hourly volume can be a reasonable representation of daily peak hour"

"the use of average hourly traffic would result in an inadequate design"

- AASHTO 2.3.2

Peak Hour Design

9:30am

0

Det 2015

arkers

12:30pm

9

4:30pm

9

60 2017

Geogle Street View, Feb 2017

Image capture: Feb 2017 ID 2017 Google United State

Streets change through the day

Streets change through the day

Fewer Good Lanes > More Bad Lanes

Fewer Good Lanes > More Bad Lanes

Travel Time: Slight improvement **Traffic Volume:** No change

Speeding (>35): 75% decrease

Fewer Good Lanes > More Bad Lanes

Total Crashes: 50% decrease Ped. Injuries: 51% decrease

Design compact intersections.

Speed reduces yield rate

Yielding Rate to Pedestrians by 85th Percentile Speed

Bertulis & Dulaski, 2013

NYC Left Turn Study

1 in 5 Ped / Bike KSIs were hit by leftturning vehicles 69% of those were on receiving streets >60ft wide.

Match Design Vehicles to Streets

DL-23

SU-30

Design for effective radius

Design for effective radius

Design for effective radius

Test using interim materials

Lt. Jonathan Baxter, SF Fire Dept.

Matching Vehicles to Goals

Use signals for efficient traffic, not fast traffic.

Use signals to manage speed

Use signals to manage speed

Slow streets unlock space.

Speed consumes linear space

40mph

Slow streets unlock linear space

Safe Places to Bike

.

NYC DOT

Efficient & Accessible Transit

RAPID

Slow streets unlock linear space

20mph

Unlock space for water

Philadelphia Water Dept.

Slow streets unlock linear space

20mph

Vibrant Spaces for People

nacto.org

Jan 16 – Webinar Integrating Bike Share & Transit

May 31 – Training Sister Cities Roadshow: Better Street & Bikeways, Columbus, OH

Thank you!

aaron@nacto.org

