## 3 Materials

### 3.0 Introduction

98

### 3.1 Sidewalks

100

#### 3.1.1 Unpigmented Concrete

101

#### 3.1.2 Pigmented Concrete

102

##### a Pigmented Concrete: Dark

103

##### b Pigmented Concrete: Bluestone

104

##### c Pigmented Concrete: Granite

105

##### d Pigmented Concrete with Exposed Light-Colored Aggregate

106

##### e Pigmented Concrete with Silicon Carbide Treatment

107

#### 3.1.3 Sand-Colored Concrete with Exposed Aggregate

108

#### 3.1.4 Concrete with Exposed Glass Aggregate

109

#### 3.1.5 Concrete with London Paver Scoring

110

#### 3.1.6 Hexagonal Asphalt Paver

111

#### 3.1.7 Bluestone Flag

112

#### 3.1.8 Granite Slab

113

#### 3.1.9 Granite Block

114

#### 3.1.10 Precast Square Paver

115

#### 3.1.11 Permeable Interlocking Concrete Paver (PICP)

116

#### 3.1.12 Rubber Paver

117

### 3.2 Curbs

118

#### 3.2.1 Unpigmented Concrete

119

#### 3.2.2 Pigmented Concrete

120

#### 3.2.3 Integral Concrete Curb and Gutter

121

#### 3.2.4 Granite

122

### 3.3 Crosswalks

123

#### 3.3.1 Granite Paver

124

### 3.4 Roadways

125

#### 3.4.1 Asphaltic Concrete

126

#### 3.4.2 Porous Asphalt

127

#### 3.4.3 Concrete

128

#### 3.4.4 Granite Block

129

## 4 Lighting

### 4.0 Introduction

134

### 4.1 Poles

138

#### 4.1.1 Davit, Round, & Octagonal Poles

139

#### 4.1.2 Flatbush Avenue Pole

141

#### 4.1.3 TBTA Pole

142

### 4.2 Luminaires

144

#### 4.2.1 HPS Cobra Head Luminaire (discontinued)

145

#### 4.2.2 Standard LED Luminaire

146

#### 4.2.3 Helm Luminaire (discontinued)

147

#### 4.2.4 Stad Luminaire (discontinued)

149

#### 4.2.5 Teardrop & Shielded Teardrop Luminaires

151

### 4.3 Integrated Streetlights

152

#### 4.3.1 Alliance Luminaire & Pole

153

#### 4.3.2 Bishops Crook Luminaire & Pole

154

#### 4.3.3 City Light Luminaire & Pole

155

#### 4.3.4 Flushing Meadows Luminaire & Pole

156

#### 4.3.5 Type B Luminaire & Pole

157

#### 4.3.6 Type F Luminaire & Pole

158

#### 4.3.7 Type M Luminaire & Pole

159

#### 4.3.8 World’s Fair Luminaire & Pole

160

### 4.4 Signal Poles

161

#### 4.4.1 Type M-2A Signal Pole

162

#### 4.4.2 Type S-1A Signal Pole

164

#### 4.4.3 Alliance Signal Pole

165
# 5 Furniture

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>Introduction</td>
<td>170</td>
</tr>
<tr>
<td>5.0.1</td>
<td>General Guidelines</td>
<td>171</td>
</tr>
<tr>
<td>5.1</td>
<td>Art Display Case</td>
<td>172</td>
</tr>
<tr>
<td>5.2</td>
<td>Automatic Public Toilet (APT)</td>
<td>173</td>
</tr>
<tr>
<td>5.3</td>
<td>Bike Parking Shelter</td>
<td>174</td>
</tr>
<tr>
<td>5.4</td>
<td>Bike Share Station</td>
<td>175</td>
</tr>
<tr>
<td>5.5</td>
<td>Bus Stop Shelter</td>
<td>176</td>
</tr>
<tr>
<td>5.6</td>
<td>CityBench</td>
<td>177</td>
</tr>
<tr>
<td>5.7</td>
<td>CityRack</td>
<td>178</td>
</tr>
<tr>
<td>5.8</td>
<td>Mini CityRack</td>
<td>179</td>
</tr>
<tr>
<td>5.9</td>
<td>Multirack</td>
<td>180</td>
</tr>
<tr>
<td>5.10</td>
<td>Newsstand</td>
<td>181</td>
</tr>
<tr>
<td>5.11</td>
<td>WalkNYC Wayfinding System</td>
<td>182</td>
</tr>
<tr>
<td>5.12</td>
<td>Waste Receptacle</td>
<td>183</td>
</tr>
</tbody>
</table>

# 6 Landscape

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>Introduction</td>
<td>188</td>
</tr>
<tr>
<td>6.0.1</td>
<td>General Guidelines</td>
<td>190</td>
</tr>
<tr>
<td>6.1</td>
<td>Tree Beds</td>
<td>198</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Tree Bed</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>Individual Tree Bed</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>Connected Tree Bed</td>
</tr>
<tr>
<td></td>
<td>Table 6a</td>
<td>203</td>
</tr>
<tr>
<td>6.2</td>
<td>Roadway Plantings</td>
<td>204</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Raised Median</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>Raised Median (Curb Height)</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>Raised Median (1.2 – 2.4 Inches)</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>Pedestrian Mall</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Triangle</td>
<td>210</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Street End</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Table 6b</td>
<td>212</td>
</tr>
<tr>
<td>6.3</td>
<td>Sidewalk Plantings</td>
<td>213</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Full Sidewalk</td>
<td>214</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Ribbon Sidewalk</td>
<td>215</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Curb Extension</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Table 6c</td>
<td>217</td>
</tr>
<tr>
<td>6.4</td>
<td>Plaza Plantings</td>
<td>218</td>
</tr>
<tr>
<td>6.4.1</td>
<td>In-Ground Planting Area</td>
<td>219</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Raised Planting Area</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Table 6d</td>
<td>221</td>
</tr>
<tr>
<td>6.5</td>
<td>Limited-Access Arterial Plantings</td>
<td>222</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Limited-Access Arterial Plantings</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Table 6e</td>
<td>225</td>
</tr>
<tr>
<td>6.6</td>
<td>Stormwater Management Practices</td>
<td>226</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Stormwater Management Practices</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>DEP ROW Bioswale</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>Stormwater Greenstreet</td>
</tr>
<tr>
<td></td>
<td>Table 6f</td>
<td>234</td>
</tr>
</tbody>
</table>

## Glossary

| A | Agency Roles on the City’s Streets | 250 |
| B | Legal & Design Guidance References | 254 |

## Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>258</td>
</tr>
</tbody>
</table>
I am pleased to present this updated Second Edition of the New York City Street Design Manual, which has become an essential reference for agencies, designers, engineers, and consultants working on our City streets and public spaces. Since its original release in 2009 and its republishing in 2013, the way we think about and design streets has progressed. DOT is working hard to make New York more sustainable, through major efforts like the citywide transition to LED lighting and the expansion of planted areas on medians in our roadways. Superstorm Sandy reinforced the importance of a resilient transportation network, and DOT has been working with its partner agencies to implement best practices. And through both his Vision Zero initiative and emphasis on equity, Mayor de Blasio has focused on the need to make the City’s streets safer and more accessible for all New Yorkers, regardless of neighborhood or ability. This update to the Second Edition reflects many of these changes in street design.

As the population grows, it has become increasingly evident that the way we design our streets determines how people interact in our City. When we build spaces that make people of all ability levels feel comfortable and encourage people not only to move through, but to stay, we create a more vibrant public realm, with safety, health and economic benefits for all. Since 2013, DOT has refined some of the treatments featured in the Second Edition of the Street Design Manual. For example, the design of the award-winning CityBench was changed to make it easier to use for older New Yorkers, and public space designs now take into consideration navigation by people with impaired vision.

The lessons from Superstorm Sandy are clear: our street network will impact how the City withstands the next major storm surge—and how quickly it bounces back once it passes. Consideration of resiliency must be integral to our planning process. We must plan for water levels twenty years from now, and build green infrastructure that can absorb and store storm runoff to ease the stress on our sewer systems. As resiliency design measures develop, the Street Design Manual will be a critical resource in bringing them together.

This update continues the Manual’s record as a living document. By the time you read this, DOT, our partner agencies, and industry professionals will be working toward publishing a Third Edition of the Manual in 2017—building on the strengths of previous versions and bringing together the latest successes and standards into a playbook ready for a rapidly changing future.

Like our City, the Manual is continuously evolving to serve the needs of our many communities in smarter, stronger and more effective ways.

Polly Trottenberg
Commissioner
This Updated Second Edition of the Street Design Manual infuses the document with a new emphasis on two critical principles, universal design and resiliency, and transmits the latest findings and standards on a broad range of street design elements and processes. It is a digital re-release; pages with new information are noted on the DOT webpage for the Manual (www.nyc.gov/html/dot/html/pedestrians/streetdesignmanual.shtml), and can be substituted directly into existing copies. Where feasible, DOT recommends saving the paper and referring directly to the digital document.

The update includes new content, based on feedback from users and comprehensive inter- and intra-agency review. Highlights include:

- Expanded focus on considerations and design practices related to universal design principles in chapter introductions and design treatments
- Additional content on resiliency measures in capital project origination section, chapter introductions and design treatments
- Revised Lighting Chapter representing citywide shift to LED streetlights and the adoption of the BUG rating system
- Updated Landscape Chapter reflecting evolution in the city’s stormwater management practices since 2013

The following agencies participated in the creation of the Manual’s Updated Second Edition: the Departments of Design and Construction (DDC), City Planning (DCP), Environmental Protection (DEP), Parks and Recreation (DPR), and Buildings (DOB), as well as the Economic Development Corporation (EDC), the Landmarks Preservation Commission (LPC), the Public Design Commission (PDC), and the Mayor’s Office.
Polly Trottenberg, COMMISSIONER, DOT

Lori Ardito, FIRST DEPUTY COMMISSIONER, DOT

Janette Sadik-Khan, FORMER COMMISSIONER, DOT

Street Design Manual Team, 2nd Edition and updates
Wendy Feuer
Margaret Newman
Nicholas Peterson
Nicholas Pettinati
Patrick Smith

The completion of the second edition and its update would not have been possible without the participation of the following individuals:

Special Contributors
Quemuel Arroyo, DPR
Jeremy Barrick, DPR
Patricia Browne, DOT
Nette Compton, DPR
Michael Flynn, DOT
Neil Gagliardi, DOT
Steve Gomez, DOT
Staci Haber, DOT
Terra Ishie, DOT
Adriana Jacykewycz, DPR
Quinn Kelly, DOT
Kleo King, MOPD
Jeff Malamy, DOT
Lynden Miller, PUBLIC GARDEN DESIGNER
Kim Mulcahy, DOT
Sean Quinn, DOT
Matthew Roe, DOT
Suchitra Sanagavarapu, DOT
Bruce Schaller, DOT
David Vega-Barachowitz, NACTO
Matthew Wells, DPR
Andy Wiley-Schwartz, DOT
Elisabeth Wooton, DOT

Streetscape Task Force and Other Contributors
Magary Aime, DPR
Fekry Azer, DOT
Sameeh Barkho, DOT
Barbara Barnes, DPR
Eric Beaton, DOT
Mike Bellev, DSNY
Matthew Best, OCPD
Maurice Bruet, DOT
Kerry Carnahan, DDC
Tom Cocola, DOT
Michelle Craven, DOT
Philip Damashek, DOT
Louann Dunbar, DOT
Skye Duncan, DCP
Alex Engel, DOT
Magdi Farag, DEP
Margaret Forgione, DOT
Elisabeth Franklin, DOT
Mikhail Fridman, DOT
Steve Galgano, DOT
Jim Garin, DEP
Hillary Gietz, DOT
Shari Glickman, DOT
Jennifer Greenfeld, DPR
Bram Gunther, DCP
Nina Haiman, DOT
Daila Hall, DOT
Leon Heyward, DOT
Christopher Hrones, DOT
Christopher James, DDCAS
Ed Janoff, DOT
Joseph Jarrin, DOT
David Jehn, DOT
Laurie Kerr, OLTPS
Jared Knowles, LPC
Aaron Koch, OLTPS
Joshua Kraus, DOT
George Kroenert, DPR
Jennifer Leung, DOT
Timothy Lynch, DDC
Patricia Lyons, DOT
Alan Ma, DOT
Nicholas Magilton, DOT
Tom Maguire, DOT
Vincent Maniscalco, DOT
Michael Marsico, DOT
John Martin, DOT
Maura McCarthy, DOT
Charles McKinney, DPR
John McLaughlin, DOT

Kate Mikulak, DOT
Yelena Minevich, DOT
Connie Moran, DOT
Michael Murphy, DSNY
Kass Negash, DDC
Dino Y.P. Ng, DDC
Signe Nielsen, PDC
Jon Orcutt, DOT
Galileo Orlando, DOT
Joseph Palmieri, DOT
Ghanashyam Patel, DOT
Susan Pondish, DOT
Vadeanand Prashad, DOT
Nancy Prince, DPR
David Ramia, DEP
Marguerite Riskalla, DOT
Gale Rothstein, EDC
Scott Roveto, DOT
Ryan Russo, DOT
Ashley Ryan, DEP
Luis Sanchez, DOT
Vaidila Satvika, DOT
Brandon Schmitt, DPR
Lacy Shelby, DOT
Jeff Shumaker, DCP
Kate Slevin, DOT
Jackie Snyder, PDC
Joseph Sopiak, DOT
Mikhail Fridman, DOT
Sandi Tomas, EDC
Keli Tyler, DOT
Amie Uhrynowski, DPR
Randi Wade, DOT
Margot Walker, DEP
Brett Wallace, DOT
Alex Washburn, DCP
Roger Weld, DOT
Andrew Weeks, DOT
Emily Weidenhof, DOT
Keith Wen, DOB
Alicia West, PDC

Copy Editor and Indexer
Thomas F. Reynolds

Graphic Design
Pure+Applied

* No longer works at the agency indicated
§ National Association of City Transportation Officials
### Agencies

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCA</td>
<td>New York City Department of Consumer Affairs</td>
</tr>
<tr>
<td>DCAS</td>
<td>New York City Department of Citywide Administrative Services</td>
</tr>
<tr>
<td>DCP</td>
<td>New York City Department of City Planning</td>
</tr>
<tr>
<td>DDC</td>
<td>New York City Department of Design and Construction</td>
</tr>
<tr>
<td>DEC</td>
<td>New York State Department of Environmental Conservation</td>
</tr>
<tr>
<td>DEP</td>
<td>New York City Department of Environmental Protection</td>
</tr>
<tr>
<td>DOB</td>
<td>New York City Department of Buildings</td>
</tr>
<tr>
<td>DOHMH</td>
<td>New York City Department of Health and Mental Hygiene</td>
</tr>
<tr>
<td>DoITT</td>
<td>New York City Department of Information Technology and Telecommunications</td>
</tr>
<tr>
<td>DOT / NYC DOT</td>
<td>New York City Department of Transportation</td>
</tr>
<tr>
<td>DPR</td>
<td>New York City Department of Parks and Recreation</td>
</tr>
<tr>
<td>DSNY</td>
<td>New York City Department of Sanitation</td>
</tr>
<tr>
<td>EDC</td>
<td>New York City Economic Development Corporation</td>
</tr>
<tr>
<td>FDNY</td>
<td>New York City Fire Department</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>LPC</td>
<td>New York City Landmarks Preservation Commission</td>
</tr>
<tr>
<td>MOPD</td>
<td>Mayor’s Office for People with Disabilities</td>
</tr>
<tr>
<td>MOS</td>
<td>Mayor’s Office of Sustainability</td>
</tr>
<tr>
<td>MTA</td>
<td>Metropolitan Transportation Authority</td>
</tr>
<tr>
<td>NYCT</td>
<td>New York City Transit, an MTA agency</td>
</tr>
<tr>
<td>NYPD</td>
<td>New York City Police Department</td>
</tr>
<tr>
<td>NYS DOT</td>
<td>New York State Department of Transportation</td>
</tr>
<tr>
<td>OCPD</td>
<td>Mayor’s Office of Capital Project Development</td>
</tr>
<tr>
<td>OMB</td>
<td>Mayor’s Office of Management and Budget</td>
</tr>
<tr>
<td>ORR</td>
<td>Mayor’s Office of Recovery and Resiliency</td>
</tr>
<tr>
<td>PDC</td>
<td>New York City Public Design Commission</td>
</tr>
<tr>
<td>SAPO</td>
<td>The Street Activity Permit Office within the New York City Office of Citywide Event Coordination and Management</td>
</tr>
<tr>
<td>SBS</td>
<td>New York City Department of Small Business Services</td>
</tr>
<tr>
<td>US ACE</td>
<td>US Army Corps of Engineers</td>
</tr>
<tr>
<td>US DOT</td>
<td>US Department of Transportation</td>
</tr>
<tr>
<td>Section</td>
<td>Geometric Treatment</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2.1</td>
<td>Roadway &amp; Lanes</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Bike Lane &amp; Path</td>
</tr>
<tr>
<td>2.1.1a</td>
<td>Bike Lane</td>
</tr>
<tr>
<td>2.1.1b</td>
<td>Bike Path</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Bus Lane &amp; Busway</td>
</tr>
<tr>
<td>2.1.2a</td>
<td>Bus Lane</td>
</tr>
<tr>
<td>2.1.2b</td>
<td>Busway</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Shared Street</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Plaza</td>
</tr>
<tr>
<td>2.1.4a</td>
<td>Permanent Plaza</td>
</tr>
<tr>
<td>2.1.4b</td>
<td>Interim Plaza</td>
</tr>
<tr>
<td>2.2</td>
<td>Sidewalks &amp; Raised Medians</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Sidewalk</td>
</tr>
<tr>
<td>2.2.1a</td>
<td>Full Sidewalk</td>
</tr>
<tr>
<td>2.2.1b</td>
<td>Ribbon Sidewalk</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Curb Extension</td>
</tr>
<tr>
<td>2.2.2a</td>
<td>Curb Extension: Community Facilities</td>
</tr>
<tr>
<td>2.2.2b</td>
<td>Curb Extension: Bus Bulb</td>
</tr>
<tr>
<td>2.2.2c</td>
<td>Curb Extension: Mid-Block Narrowing</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Raised Median</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Pedestrian Safety Island</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Median Barrier</td>
</tr>
<tr>
<td>2.3</td>
<td>Traffic Calming</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Lane Narrowing and Lane Removal</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Raised Speed Reducer</td>
</tr>
<tr>
<td>2.3.2a</td>
<td>Raised Speed Reducer: Speed Cushion</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Gateway</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Raised Crosswalk</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Chicane</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Neighborhood Traffic Circle</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Roundabout</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Raised Intersection</td>
</tr>
</tbody>
</table>
2.0 Introduction

Introduction

About this Chapter
The geometric design of streets is integral to their use; for instance, overly wide roadways and corners with large turning radii tend to invite speeding and create an environment that is uncomfortable for pedestrians. Pedestrian ramps improve transitions for users, particularly people with disabilities. Geometry also affects streets’ economic, community, and environmental impacts.

This chapter establishes general guidelines for the geometric design of streets as well as a “toolbox” of geometric treatments that may be used to enhance safety, mobility, and sustainability.

The recommendations of this chapter supplement rather than replace existing sources of detailed engineering guidance and do not supersede any existing federal, state, or city laws, rules, and regulations. All projects remain subject to relevant statutes, such as the Zoning Resolution of the City of New York, City Environmental Quality Review (CEQR) and appropriate reviews and approvals of oversight agencies.

Guidance Sources


Applicability and Exceptions
All new projects that significantly impact public and private streets should follow these guidelines. DOT approval will be based on site-specific conditions and cost-effective engineering standards and judgment, with the safety and accessibility of all street users being of paramount importance.

Usage Categories
Geometric treatments are divided into three categories: Wide, Limited, and Pilot applications.

Wide
Geometric treatments of this type are in wide use throughout New York City. They constitute the basic set of elements that are typically found on city streets. Designs should incorporate them wherever appropriate. These treatments generally require less intensive review than limited or pilot treatments.

Limited
Geometric treatments of this type are currently in limited use in New York City. While the designs are well-established, their application is contingent on site-specific conditions. These treatments will require more in-depth review of appropriateness and feasibility.

Pilot
Geometric treatments of this type are currently in, at most, limited use in New York City, but have been employed successfully in other US and international cites. Appropriate design criteria are still under development for application in New York City. Proposals for pilot usage of these treatments are encouraged and will be evaluated on a case-by-case basis.
The following guidelines expand on the general policies and principles outlined in the Introduction, with more detailed information specific to geometric street design.

**Sustainable Street Design**

Street reconstruction projects are, as a rule, designed to accommodate motor vehicle traffic that is forecasted for a certain year (the “design year”) in order to meet requirements of the Clean Air Act; and in many jurisdictions in the United States the forecast invariably calls for growth in motor vehicle traffic. For federally funded projects, the design year is 20 years after the project is completed (the “build year”). In New York City, consideration should be given to recent trends in traffic and mode choice — as documented in DOT’s Sustainable Streets Index — and their implication for traffic volumes in future years (e.g., five years after the build year). In most parts of the city, motor vehicle traffic volumes are stable or shrinking, while transit is growing; this is due to New York City’s heavy investments in the last two decades in subway, bus, pedestrian, and bicycle infrastructure. These investments have spurred rapid increases in non-auto travel, suggesting that there is a positive relationship between street design and mode choice: streets that prioritize the safety and movement of pedestrians, bus riders, and cyclists equally with the movement of cars will produce more sustainable outcomes.

As the New York State DOT’s Project Development Manual states, it is understood that, even for a federally funded project, it “…may not always be practicable to…fully accommodate design year traffic, or even to fully address existing traffic congestion.” Further, “…traffic forecasts alone do not dictate project scope. Forecasts are only one of many factors (safety needs, mobility needs, environmental issues, community needs, etc.) to be addressed.” (See p. 5–2 Design Year Traffic Forecasts section of the Project Development Manual for more information: www.dot.ny.gov/divisions/engineering/design/dqab/dqab-repository/pdmap5.pdf.)

**Vehicle Target Speed**

Streets should be designed with target speeds (see Glossary) and speed limits appropriate to their surrounding uses and desired role in the vehicular network. The citywide speed limit is 25 mph, except where otherwise noted. New York State Vehicle & Traffic Law (VTL) Section 1642(a)(26)(a) currently allows speed limits below 25 mph, and as low as 15 mph in New York City if used in conjunction with traffic-calming measures. Slower target speeds and speed limits should be considered on local streets, residential streets, and alleys; on streets adjacent to schools; in areas with higher populations of seniors or people with disabilities; and on waterfronts, in parks, or in and around other significant pedestrian destinations.

DOT applies design interventions as necessary to slow down fast and aggressive driving. These interventions, known as “traffic-calming” measures, include LANE NARROWING & LANE REMOVAL (2.3.1), SPEED CUSHIONS (2.3.2a), CURB EXTENSIONS (2.2.2), and RAISED CROSSWALKS (2.3.4), and sometimes are intended also to improve pedestrian comfort. As part of its efforts to enhance safety, DOT deploys traffic-calming devices in neighborhoods around schools and in areas with high numbers of crashes involving elderly pedestrians. Community groups can also request certain traffic-calming interventions at specific locations by requesting them from their DOT Borough Commissioners. Some traffic-calming treatments can be designed in such a way as also to enhance the public realm.

Wide roadways like Queens Boulevard can be mitigated with measures such as pedestrian facilities on medians: Queens
**2.0.1 General Guidelines**

**GEOMETRY**

**Roadway Width, Corner Radii, and Crossing Distance**

The roadway — the portion of a street designed, enhanced, or ordinarily used for vehicular travel, exclusive of the sidewalk — should be designed to be the minimum possible width, with the minimum number of lanes, that safely and cost-effectively allows for the desired operations of motor vehicles, buses, and bicyclists. Narrower roadways minimize pedestrian crossing distances, encourage safe driving behavior, and reduce impermeable, heat-absorbing asphalt coverage.

Roadway reconstructions should be designed for traffic volumes expected in the actual build year. Additional consideration should be given to recent trends in traffic and mode choice — as documented in DOT’s Sustainable Streets Index — and their implication for traffic volumes in future years (e.g., five years after the build year). Excess width should be reallocated to provide walking, transit, and bicycling facilities, public open space, green cover, and/or stormwater source control measures. If financial limitations preclude final implementation of street retrofits (e.g., curbing, streetscaping, etc.), the reallocation of space should still proceed with temporary or least costly approaches such as restriping.

To reduce pedestrian crossing distances further and slow turning vehicles, all roadway corners should be designed with the smallest possible radius that still accommodates the design vehicle and emergency vehicles.

Pedestrian crossing distances should be minimized in all locations utilizing the above methods and other treatments, such as CURB EXTENSIONS (2.2.2) (neckdowns) and RAISED MEDIANS (2.2.3). Sidewalk narrowings and roadway widenings should be avoided.

**Design Vehicles and Emergency Access**

The design vehicle (see Glossary) used for geometric street designs, typically a 30-foot-long single-unit truck, should be appropriate to the predominant intended uses of the given street and should not include commercial vehicles larger than New York City’s maximum allowable length. In addition, all street designs must consider FDNY, other emergency-vehicle, and sanitation-vehicle-access needs (e.g., for street cleaning and snow clearing).

**Complex Intersections**

Multi-leg or skewed angle intersections should be redesigned (to the extent possible) to simplify operations and reduce or separate conflicts. This can include the removal of intersection legs and slip lanes that are unimportant to the traffic network, creation of right-angled intersection alignments, and simplified traffic patterns. Resulting pedestrian space should be consolidated into its most usable form to create new public open space and shorter, more direct crossings. The use of slip lanes should generally be avoided unless they produce a conflict-free crosswalk from the island that can provide an important pedestrian-safety enhancement.

**Universal Design**

Projects must meet or exceed all applicable federal, state, and/or local accessibility standards for facilities and public rights-of-way, including minimum clear path widths, inclusion of ADA-compliant pedestrian ramps and detectable warning strips, and provision of accessible transit facilities.

**Drainage**

All modifications to street geometry should consider and avoid unintended changes in the direction and disposition of stormwater runoff so as not to create ponding or flooding issues. Minimize impervious paved areas and utilize permeable paving wherever possible. Include planted areas and stormwater source controls within the roadway wherever feasible. Stormwater control within the street network may offer opportunities for resiliency benefits in areas that experience frequent flooding.
Roadways & Lanes
GEOMETRY: ROADWAYS & LANES

2.1.1 Bike Lane & Path

Bike Lane & Path

A dedicated on-street lane or path for bicycles (see Glossary). Bikeways are typically designed as BIKE LANES within the roadway delineated with markings (2.1.1a, also known as Class 2 bike lanes) or as BIKE PATHS physically separated from traffic for most of their length (2.1.1b, also known as Class 1 bike lanes). Another typical design is the shared lane (Class 3 bike lane) described in Table 1. The shared lane is not covered by the Manual. Bikeways in parks, or in other places with heavy pedestrian traffic can also be designated by bike stamps.

Benefits

Provides dedicated space for bicyclists, enhancing safety, comfort, and mobility

Cumulative with other bikeways, provides a comprehensive network of recommended routes for bicyclists, thereby encouraging bicycling

Application

On streets with high current or anticipated bicycle volumes or that offer important linkages to destinations or between routes, or to calm overly-wide roads for cycling circulation

Considerations

Ensure sufficient outreach to people with vision disabilities and facilities serving this population to provide adequate notification of changes during the planning and implementation phases

Design

See Table 1 (following 2.1.1b) for a listing of typical bikeway designs and their respective spatial requirements, ideal applications, and advantages and disadvantages

Create connectivity with adjoining bikeways, bike parking, transit, and commercial or cultural destinations

Utilize permeable paving and/or paving with a high SRI value within BIKE LANE or BIKE PATH

Utilize recycled content in paving materials

ABOVE: Buffered bike lane: 9th Street, Brooklyn
LEFT: Two-way, parking-separated bike path: Prospect Park West, Brooklyn
2.1.1a Bike Lane

**Bike Lane**

*Usage: Wide*

A portion of a roadway that has been designated by striping, signs, and pavement markings for the preferential or exclusive use of bicyclists. Also known as a Class 2 bike lane. Physical separation of bike lanes is desirable, but is not always possible due to physical or operational constraints designated by bike stamps.

**Benefits**

See benefits of BIKE LANES & PATHS (2.1.1)

On-roadway bike lanes that narrow or replace motor vehicle lanes can calm traffic

**Considerations**

Without physical separation, vehicles can block bike lanes, making enforcement of violations more critical

**Application**

See application guidance for BIKE LANES & PATHS

Consider using a BIKE PATH (2.1.1b) rather than, or in addition to, a BIKE LANE where street conditions permit (e.g., street width, traffic volume, etc.)

**Design**

See design guidance for BIKE LANES & PATHS

BIKE LANES should be buffered when possible, typically with 3 feet of channelization

At intersections with complex traffic patterns—or when bike lanes are located immediately adjacent to the curb—bike lanes can be given visual emphasis through the application of green-colored pavement

ABOVE: Bike lane: 164th Street, Queens

LEFT: Bike lane: Montgomery Street, Manhattan
**BIKE LANE & PATH**

**Bike Path**

**Usage:** Limited

**Benefits**

See benefits of BIKE LANES & PATHS (2.1.1)

- Offers greatest bicyclist separation from motor vehicle traffic on mid-block sections
- Reduces risk of “dooring” (a motor-vehicle occupant opening her door into the path of an oncoming bicyclist)
- Reduces or eliminates blocking of the bike lane by motor vehicles and the swerving of bicyclists into mixed traffic
- Encourages novice and less confident cyclists to opt for cycling

**Considerations**

Design consideration must be given to pedestrians with vision/mobility disabilities, emergency-vehicle and paratransit access to adjacent buildings, snow-clearing and street-sweeping needs, and commercial vehicles loading and unloading

**Application**

Where a BIKE LANE is appropriate and the street is an important bicycle network connection, or has high motor vehicle volumes or speeds or multiple moving lanes, or is along a park, waterfront, or other open space where cross streets and driveways are infrequent

Consider wherever a BIKE LANE is appropriate

**Design**

See design guidance for BIKE LANES & PATHS (2.1.1)

Care must be given to the design of bike paths at intersections and driveways to maintain visibility of the bicyclist to motorists (and vice-versa) and to reduce the risk of turning conflicts with motor vehicles

**RAISED MEDIANS**

Design RAISED MEDIANS that separate bike paths according to the RAISED MEDIAN section (2.2.3)

If a separated bike path uses raised medians, see the CURB-HEIGHT MEDIAN section (6.2.1a) or the RAISED MEDIAN section (6.2.1b) for information on plantings
## 2.1.1 Bikeway

### Protected Path with Mixing Zones
- **Location:** Grand Street, Manhattan
- **Width:** 8 feet
- **Parking Loss:** High
- **Application:**
  - Wide one-way multilane street
  - Excess road space
  - High-speed vehicular traffic
  - High potential for motor vehicle intrusion into standard lane
- **Advantages:**
  - Full protection for cyclists
  - Major enhancement to pedestrian safety and comfort
- **Disadvantages:**
  - Space needs
  - Parking impacts
  - Signal timing and loading activity increase delays
  - Cyclist mobility
  - Complex review and implementation
  - Turn restrictions may be needed at complex intersections to maintain acceptable operations

### Signal-Protected Path
- **Location:** 9th Avenue, West 59th to 16th Streets, Manhattan
- **Width:** 14 feet
- **Parking Loss:** High
- **Application:**
  - One- or two-lane street
  - Excess road space
  - Low-speed vehicular traffic for safe mixing zone
  - High potential for motor vehicle intrusion into standard lane
- **Advantages:**
  - Protection for cyclists mid-block
  - Mixing zone to manage turning conflict
  - Simpler implementation than Signal Protected Path
  - Signal timing unchanged
- **Disadvantages:**
  - Parking impacts
  - Cyclist mobility
  - Unproven (Pilot)
  - Complex review and implementation
  - Challenging to regulate floating parking

---

<table>
<thead>
<tr>
<th>Ideal Application</th>
<th>Commercial Avenues</th>
<th>Commercial Cross-Streets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○ Wide one-way multilane street&lt;br&gt;○ Excess road space&lt;br&gt;○ High-speed vehicular traffic&lt;br&gt;○ High potential for motor vehicle intrusion into standard lane</td>
<td>○ One- or two-lane street&lt;br&gt;○ Excess road space&lt;br&gt;○ Low-speed vehicular traffic for safe mixing zone&lt;br&gt;○ High potential for motor vehicle intrusion into standard lane</td>
</tr>
</tbody>
</table>

**TABLE 1**

**Class 1: Bike Path (2.1.2b)**

<table>
<thead>
<tr>
<th>Space Required</th>
<th>14 feet</th>
<th>8 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Loss</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>5–6 parking spaces/turn bay (usually every other block)</td>
<td>4–5 parking spaces/mixing zone (usually every other block)</td>
</tr>
</tbody>
</table>
## 2.1.1 Bikeway

### Class 2: Bike Lane (2.1.2a)
- **Buffered Lane**
  - DeKalb Avenue, Brooklyn
- **Standard Lane**
  - 21st Street, Manhattan

<table>
<thead>
<tr>
<th>GEOMETRY: ROADWAYS &amp; LANES</th>
<th>2.1.1 Bikeway</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Buffered Lane</strong></td>
<td><strong>Standard Lane</strong></td>
</tr>
<tr>
<td><strong>DeKalb Avenue, Brooklyn</strong></td>
<td><strong>21st Street, Manhattan</strong></td>
</tr>
</tbody>
</table>

### Class 3: Bike Route (Not Included in Manual)
- **Shared Lane**
  - 48th Street, Queens
- **Signed Route**

<table>
<thead>
<tr>
<th>GEOMETRY: ROADWAYS &amp; LANES</th>
<th>2.1.1 Bikeway</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Shared Lane</strong></td>
<td><strong>Signed Route</strong></td>
</tr>
<tr>
<td><strong>48th Street, Queens</strong></td>
<td><strong>Signed Route</strong></td>
</tr>
</tbody>
</table>

### Medium-Low
- Parking typically preserved unless space unavailable.
- Strict curb regulations sometimes needed.

### Low
- Parking is typically preserved.

### Limited Use
- Interim treatment
- Connected to other bicycle facilities
- Indicates a preferred bicycle route
- Preserves curbside access

### Residential Avenues
- Wide multilane street
- Excess road space
- Low potential for intrusion into bicycle lane

### Residential Cross-Streets
- One- or two-lane street
- Excess road space
- Low potential for intrusion into bicycle lane

### Narrow Streets
- One- or two-lane street
- No excess road space
- Connected to other bicycle facilities

### Vehicular Intrusion remains possible
- Width tempts motorists to intrude
- Perceived as less safe than protected paths

### Dedicated cycling space
- Buffer zone enhances comfort for cyclists
- Preserves curbside access
- Simple implementation

### Dedicated roadway space for cycling
- Preserves curbside access
- Simple implementation

### Clear, easy to follow bicycle route
- Heightens driver awareness of cyclists
- Preserves curbside access
- Simple implementation

### Indicates a preferred bicycle route
- Preserves curbside access
- Simple implementation

### Does not provide dedicated roadway space for cycling
- Cyclists not separated from traffic
- Perceived as less safe than protected paths

### Does not provide dedicated roadway space for cycling
- Cyclists not separated from traffic
- Sign placement critical, can be challenging
Benefits

Improves bus speeds and reliability by separating buses from potential congestion in mixed traffic and by reducing or eliminating their need to merge in and out of traffic at bus stops.

SBS buses operate up to 20% more efficiently than the same bus models operating on other routes, thereby reducing emissions.

Provides means for emergency vehicles to bypass traffic.

Considerations

If curbside, may result in restriction of curbside parking/loading.

Application

Streets with SBS or high bus volumes and moderate to high traffic congestion or excessive road space.

Consider on all streets with high bus volumes or existing or planned SBS and adequate space, regardless of congestion.

Avoid on streets where the roadway geometry prevents the safe operation of a BUS LANE or BUSWAY in conjunction with other necessary uses of the roadway.

A dedicated on-street facility for buses. BUS LANES are delineated within the roadway with markings (2.1.2a) while BUSWAYS are physically separated from traffic for most of their length (2.1.2b). Both facility types can either be designed to run along the median of the street or along the outside (curbside or offset from a parking lane) of the street. Select Bus Service (SBS) is a high-quality bus service operated by MTA New York City Transit that uses several techniques to improve the speed and reliability of bus service, including BUS LANES.
Design

BUS LAINES AND BUSWAYS can be located immediately adjacent to the curb (curb bus lane or busway), adjacent to the righthand parking lane (offset bus lane), or in the middle of a road with boarding island stations (median bus lane or busway).

ALL BUS LANE AND BUSWAY types can be one or two lanes per direction based on bus volume, operating characteristics, and road width; one lane per direction is a more common treatment.

Use an offset bus lane where possible, particularly when parking needs to be maintained; stops can be made at the curb or at BUS BULBS (2.2.2b).

Use a curb-aligned bus lane or busway when right-of-way may be constrained and where parking impacts can be managed.

For curb-aligned designs, curbside deliveries can be accommodated with loading windows, lay-bys, and/or reserved commercial loading around the corner.

A median BUS LANE or BUSWAY should be considered on two-way streets when sufficient right-of-way is available to accommodate the bus facility and the associated boarding islands, and the operation of the busway (including pedestrian movements) can be safely managed.

For median bus lane or busway designs, boarding platforms must be included for bus passengers at bus stops; these islands can also function as PEDESTRIAN SAFETY ISLANDS (2.2.4).

For improved roadway longevity, a concrete roadway should be considered for BUS LANES AND BUSWAYS when conditions permit.

Utilize paving with a high SRI value within bus lane or busway unless red-colored pavement is to be used per 2.1.2a.

Utilize recycled content in paving materials.
# Bus Lane

**Usage:** Limited

## Benefits

See benefits of BUS LANES & BUSWAYS (2.1.2)

## Considerations

See considerations for BUS LANES & BUSWAYS (2.1.2)

## Application

See application guidance for BUS LANES & BUSWAYS (2.1.2)

## Design

See design guidance for BUS LANES & BUSWAYS

Red-colored pavement can be considered for bus lanes that operate six or more hours per day.

At intersections, the allowance or prohibition of turns from the bus lane should be clear, such as breaking the solid white line where cars can enter to make right turns.

---

A portion of a roadway which has been designated by striping, signing, and pavement markings for the preferential or exclusive use of buses. Physical separation of bus lanes is often inadvisable due to physical or operational constraints. Painted lanes, overhead signs, and soft barriers can minimize intrusion of other vehicles. Where land use and street width permit, full or partial physical separation can help enforce the lanes (see 2.1.2b).
**Busway**

**Usage:** Limited

**Benefits**

See benefits of **BUS LANE & BUSWAY** (2.1.2)

Reduces or eliminates blocking of **BUS LANE** (2.1.2a)

**Considerations**

Design consideration must be given to emergency vehicle access, deliveries and pick-up/drop-off to adjacent buildings, and to snow-clearing and street-sweeping needs

Attention should be given to accommodation of and navigation by people with vision disabilities

---

**Application**

See application guidance for **BUS LANES & BUSWAYS**

Consider where a **BUS LANE** is appropriate and the street is a high-volume bus route and has adequate right-of-way to accommodate a busway

Consider wherever a **BUS LANE** is appropriate

---

**Design**

See design guidance for **BUS LANES & BUSWAYS**

Busways should be designed to allow emergency vehicles to bypass traffic

On routes with multiple tiers of bus service, passing needs (e.g., express buses) should be accommodated

---

**A physically separated lane reserved for bus traffic.** Busways are similar to **BUS LANE**s (2.1.2a) in most respects, however full or partial physical separation (typically through a narrow curb or wider **RAISED MEDIAN** [2.2.3]) further improves bus speeds by minimizing blocking of the bus lane by other vehicles.

---

If a median busway design is not separated with a wide median, then the median must widen to provide boarding platforms for bus passengers at bus stops, which must meet ADA standards

Turns across busways need to be controlled for safety; bus-only signals may be needed

Crosswalks, detectable warning strips and traffic control devices should be used to signal transitions between pedestrian space and busways for people with vision disabilities

**RAISED MEDIANS** used to separate busways should be designed according to the **RAISED MEDIAN** section

Utilize paving with a high SRI value within busway, for example concrete

For median-separated busway, see the **CURB-HEIGHT MEDIAN** section (6.2.1a) for information on plantings
2.1.3 Shared Street

**Shared Street**

**Usage:** Pilot

Often referred to as a “pedestrian-priority street,” a shared street is a low-speed, typically curbless roadway designed as a single surface shared among pedestrians, bicyclists, and low-speed motor vehicles.

Typically employed on low-vehicle-volume and/or high-pedestrian-volume streets, vehicles are slowed to very low speeds through a reduced speed limit, traffic calming, signage, and use of distinctive materials, furnishings, and other visual cues in the roadway that encourage drivers to travel with increased caution. Street users generally negotiate right-of-way cooperatively rather than relying on traffic controls, allowing pedestrians to dominate the street. The entire street thus effectively functions as a public space. Different forms of shared streets can be used in different contexts.

**Benefits**

- Allows freer pedestrian movement within walking-oriented areas and to and from surrounding land uses and destinations
- Reduces sidewalk crowding on narrow streets
- Maintains bicycle, local vehicle, and delivery access while creating an exceptionally pedestrian-oriented street that accommodates recreational and social activities
- Allows active land uses to spread into the surrounding street network, fostering a vibrant public realm

- Comfortable, attractive environment encourages “staying” activities such as relaxing, shopping, eating, and socializing
- Integrated design can incorporate art, street furniture, landscaping, and other innovative and attractive design elements
- Encourages partnerships with the community in beautification, maintenance, and programming of street space

**Considerations**

- Attention should be given to accommodation of and navigation by people with vision, hearing, and ambulatory disabilities
- May impact street drainage or require catch basin relocation
- May require loss of on-street parking
- Any community facilities integrated into the design, such as street furniture or public art, will typically necessitate the presence of a maintenance partner and a permit or revocable consent from the city
- Coordinate streetscape/utility work to minimize street cuts
Application

Consider on narrower streets (at most two moving lanes) or outer roadways of boulevard-type streets, with little or no through-traffic, and which are not major vehicular or bicyclist through-routes or designated truck routes.

Consider on streets adjacent to major pedestrian destinations, where vehicle volumes are low and pedestrian desire lines are diffuse (i.e., pedestrians would like to cross the street in many places).

Consider on local residential streets whose design priority is to allow safe use of street space for recreational activities and green space, in partnership with residents or neighborhood groups.

Consider on narrow, alley-type streets. Depending on the specific land uses, width, vehicle and pedestrian volumes, and other access and operational characteristics of the street, a shared street may not be appropriate, in which case consideration should be given to a standard roadway with alternative design options such as traditional traffic calming and/or a mid-block crossing.

Consider as an alternative a fully pedestrianized street when pedestrian volumes are high, vehicle volumes are low, and vehicle access is not required during daytime hours.

Design

Curbs should not be used, but pedestrian paths of travel alongside vehicle zones with guideways using tactile cues and maximum visual contrast should be included for people with vision disabilities.

In the absence of curbs, special attention should be given to providing adequate drainage.

Vehicle-free, accessible routes must be provided for the visually impaired.

Design should utilize whatever horizontal, vertical, and material treatments are necessary to encourage vehicle speeds that are low (15 mph or lower) throughout, whether or not pedestrians are present.

Use GATEWAY (2.3.3) or similar treatments and proper signage at entries to discourage through-traffic, indicate the change in street environment, and slow entering vehicles.

Institute a reduced speed limit (New York State VTL Section 1642(a)(26)(a) currently allows as low as 15 mph) along with the physical traffic-calming of the shared street.

Attractive street materials, furnishings, and other objects within the street can be used to alert drivers and emphasize the pedestrian orientation of the space, subject to permits, maintenance agreements, or revocable consents as required.

Include planted areas and stormwater source controls within the roadway wherever possible.

Staggered sections of parking or loading zones can be used as a design option to constrict wider streets.

To maintain the streetscape elements required for creating a low-speed environment and fostering a vibrant public space, careful attention must be paid to proper programming and management of the space, with the participation of an active maintenance partner where appropriate.

Minimize impervious paved areas and utilize permeable paving wherever possible.

Maximize trees and other green cover. See TREE BEDS (6.1) and ROADWAY PLANTINGS (6.2).

Utilize stormwater source controls wherever feasible. See STORMWATER MANAGEMENT PRACTICES (6.6).

Increase SRI value of paved surfaces to reduce urban heat island impact.

Utilize recycled content in paving materials.
Plaza

An area located fully within the roadway that is designated by DOT for use by pedestrians. The space may contain benches, tables, or other facilities. DOT builds both interim and permanent plazas. Many plazas are built through DOT’s Plaza Program, which aims to enhance the public realm. See Chapter 1: PROCESS for more information on how DOT projects are planned, designed, and implemented.

Benefits
- Promotes social interaction and builds neighborhood identity
- Encourages pedestrian activity and associated health benefits
- Catalyzes local economic development
- Serves as a venue for a diverse range of community, cultural, and/or commercial events
- Enhances safety by narrowing wide roadways and/or normalizing intersections

Considerations
- The road segment’s relevance to the traffic network
- Open-space needs
- Surrounding land uses and site appropriateness
- Anyone can apply to the Street Activity Permit Office (SAPO) to stage events on DOT plazas. To learn more about the event permitting process, contact SAPO by phone at (212) 788-7567 or visit www.nyc.gov/cecm
- Advertising is not permitted in plazas
- Generally requires a maintenance agreement

Application
- Under-utilized, DOT-owned road segments and other city property
- Locations with high crash rates
- Neighborhoods that support repurposing streets for plazas

Design
- Plaza designs should support year-round events and programs
- See design guidance for PERMANENT PLAZA (2.1.4a) and INTERIM PLAZA (2.1.4b)
- Provide clear paths and tactile cues to accommodate people with disabilities
- Furniture should accommodate people with disabilities; for example, providing space for knee clearance for people using mobility devices
Permanent Plaza

Usage: Limited

Benefits
See benefits of PLAZA (2.1.4)

Considerations
See considerations for PLAZA (2.1.4)

Application
See application guidance for PLAZA (2.1.4)

Neighborhoods with active not-for-profit organizations that can serve as Partners to maintain and manage plazas

Areas with appropriate adjacent land uses, sufficient population density, proximity to transit, historic sites, significant view corridors

Design
Each permanent plaza is designed to reflect the character and context of its neighborhood. DOT and the Partner conduct a public process to develop an appropriate design that is responsive to the needs of the community

A consultant design team bases its plans on feedback from the public process

Sites smaller than 2,000 square feet are not encouraged

Plazas may include movable and/or formal and informal fixed seating; trees and plants (see TREE BEDS [6.1] and PLAZA PLANTINGS [6.4]); lighting; paving; information and wayfinding signage; subconcessions; public art (temporary and permanent); bicycle parking; and drinking-water fountains

Incorporate public art where feasible

All permanent public art must be coordinated through the Department of Cultural Affairs (DCA) Percent for Art Program and requires approval by the Public Design Commission (PDC). Permanent art may be completely integrated and functional (e.g., benches, tables, etc.), or it may be stand-alone art (e.g., a sculpture)

Temporary art can be installed as a one-time project or cycled through on a temporary basis at a designated space in the plaza. Temporary art must be coordinated through DOT's Urban Art Program. For guidelines and to apply to the Urban Art Program, visit www.nyc.gov/urbanart

Minimize impervious paved areas and utilize permeable paving wherever possible

Incorporate trees and other green cover. See TREE BEDS (6.1) and PLAZA PLANTINGS (6.4)

Utilize stormwater source controls wherever feasible

Increase SRI (solar reflective index) value of paved surfaces to reduce urban heat island impact

Utilize recycled content in paving materials

A plaza built with Capital funds to be maintained and managed by a local not-for-profit organization (Partner) or another entity, such as the Department of Parks & Recreation (DPR). Such a project completely reconstructs the street segment, in whole or in part.

Completed in spring 2013, Willoughby Plaza features new trees and a flexible, open space that lends itself well to a wide range of events and programming, including the art displays shown here: Brooklyn
### Benefits

See benefits of PLAZA (2.1.4)

Catalyzes community support for the space

DOT can study the interim plaza and incorporate its observations and feedback into the eventual capital design of the space

Tests maintenance partner’s capacity to maintain and program the plaza

Epoxy gravel or paint creates a more reflective surface, making the space feel safer at night

Cheaper and faster to design and install than a PERMANENT PLAZA

### Considerations

See considerations for PLAZA (2.1.4)

Maintenance partner replaces elements over time as needed

Attention should be given to accommodation of and navigation by people with vision disabilities

### Application

See application guidance for PLAZA (2.1.4)

Typically the phase prior to a PERMANENT PLAZA (2.1.4a), delivering community benefits quickly, and generating feedback for permanent design

As requested by a community and/or where a safety project provides a public-space opportunity

In the absence of a curb, granite blocks are to be placed next to crosswalks when feasible to provide directional guidance for pedestrians with vision disabilities

DOT places edge objects, such as planters, granite blocks and flexible delineators in and around the space to create a consistent boundary and sense of enclosure, and to buffer it from motor vehicle traffic. DOT also applies epoxy gravel or paint to distinguish it visually from the adjacent roadway

DOT and/or Partners provide publicly accessible furniture, such as moveable chairs and tables

Incorporate temporary public art where feasible. See guidance for temporary art in PERMANENT PLAZA (2.1.4a)

### Design

See design guidance for PLAZA (2.1.4)

Geometry is engineered by DOT and is typically delineated with roadway markings and flexible reflective bollards

Detectable warning strips are required at pedestrian access routes or crossings where the transition from pedestrian space to roadway is flush, and should include high color contrast from the plaza surface

ABOVE: Putnam Plaza, Brooklyn

LEFT: Plazas host multiple special events throughout the year: Corona Plaza, Queens
Sidewalks & Raised Medians
**Benefits**

Provides infrastructure for the most widely used mode of travel in New York City—walking

Creates linkages to transit, connects neighborhood destinations, and allows trip chaining

Supports mobility for the majority of New Yorkers

Facilitates straight and unobstructed pedestrian movement, free of vehicle conflicts except at intersections and driveways

With adequate width, can provide space for "staying" activities such as relaxing, shopping, eating, and socializing

**Considerations**

Coordinate streetscape/utility work to minimize street cuts

**Application**

On both sides of all streets that are 22 feet wide or wider. Exceptions include SHARED STREETS (2.1.4), pedestrian-only, and streets in certain historic districts per LPC

Ribbon sidewalks are appropriate in R1-R6 zoning districts; full sidewalks are used elsewhere

**Design**

Sidewalks should always be provided on both sides of the street

See SIDEWALKS (3.1) in the Materials chapter for information on options for sidewalk materials

A park’s internal path located near a roadway does not substitute for a sidewalk

If the sidewalk is more than 25 feet wide, there should be a clear path adjacent to the building line and an 8-foot clear path adjacent to the curbside furnishing zone

Sidewalks (and planting strip, if applicable) should be as wide as possible appropriate to foot traffic and available street width

---

**Sidewalk**

That portion of a street, whether paved or unpaved, between the curb lines or the lateral lines of a roadway and the adjacent property lines intended for the use of pedestrians. Where it is not clear which section is intended for the use of pedestrians, the sidewalk will be deemed to be that portion of the street between the building line and the curb. In denser areas a FULL SIDEWALK (2.2.1a) reaching all the way to the curb is used, while in less built-up areas a RIBBON SIDEWALK (2.2.1b), with a vegetated or grass planting strip between the sidewalk and the roadway, can often be used.

![Sidewalk with standard paving treatment: 11th Avenue, Manhattan](image)
Sidewalks must conform to ADA requirements for minimum clear path width and provision of spaces where wheelchair users can pass one another or turn around.

Provide an unobstructed clear path of 8 feet or one half the sidewalk width (whichever is greater) in commercial, high-density residential, and transit-adjacent areas.

Sidewalks in low-rise residential areas should be at least 5 feet wide.

Wherever possible, sidewalk cross-slope should not be greater than 2%.

Sidewalks must meet load-bearing, friction, and other requirements per relevant standard specifications and regulations.

ADA-compliant pedestrian ramps must be provided at all pedestrian crossings; separate ramps should be used aligned with each crosswalk and be centered on a continuation of the sidewalk.

Color of detectable warning strip should contrast with surrounding pavement: dark gray in areas of light pavement and white in areas of dark pavement. See DOT Standard Details of Construction drawing H-1011.

The area within 18 inches of the curb should be kept free of all obstructions.

New York City Mayor’s Executive Order No. 22 of 1995 (the “Clear Corner Policy”) states that to the maximum extent possible, structures and objects should not be placed in the corner quadrant.

For recommended clearances between obstructions, see Revocable Consent Rules (Rules of the City of New York, Title 34, Chapter 7, Section 7-06(c)(5)), DOT Highway Rules (Rules of the City of New York, Title 34, Chapter 2, Section 2-10), DCA’s rules regarding newsstands (Rules of the City of New York, Title 6, Chapter 2, Subchapter G), and Proposed Accessibility Guidelines for Pedestrian Facilities in the Public Right of Way (US Access Board, 2011).

Include planted areas and stormwater source controls within sidewalks wherever possible when a maintenance partner is identified.

If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains.

Minimize impervious paved areas and utilize permeable paving wherever possible.

Maximize trees and other green cover wherever clearance allows. See TREE BEDS (6.1) and SIDEWALK PLANTINGS (6.3).

Utilize stormwater source controls wherever feasible.

Increase SRI value of sidewalk materials to reduce urban heat island impact.

Utilize recycled content in paving materials.
2.2.1a Sidewalk: Full Sidewalk

Full Sidewalk

Usage: Wide

Benefits
See benefits of SIDEWALK (2.2.1)

Provides increased space for pedestrian movement and improved curbside access as compared to a RIBBON SIDEWALK (2.2.1b)

Application
See application guidance for SIDEWALK (2.2.1)

Design
See design guidance for SIDEWALK (2.2.1)

A full sidewalk accommodates both pedestrian traffic and a range of street furnishings and fixtures. The area of the sidewalk closest to the curb, where light poles, signs, fire hydrants, waste receptacles, telephone booths, newspaper boxes, etc., are typically located, is referred to as the “furnishing zone.”

Full sidewalk: Seventh Avenue, Brooklyn (Credit: DCP)

Sidewalk corner with pedestrian ramps: West 110th Street, Manhattan
A sidewalk that is separated from the roadway by a continuous, unpaved planting strip. Most existing ribbon sidewalks in the city have a lawn planting strip, more sustainable landscaping options should be utilized whenever possible. Alternatively, planting strips can be designed as pilot STORMWATER MANAGEMENT PRACTICES (6.6.1) to help collect stormwater runoff.

**Benefits**

See benefits of SIDEWALK (2.2.1)

Provides greater space for tree roots than a FULL SIDEWALK (2.2.1a) with INDIVIDUAL TREE BEDS (6.1.1a), improving long-term tree health

Provides a modest improvement in stormwater detention from the sidewalk and/or roadway as compared to a FULL SIDEWALK

Provides a more attractive streetscape in areas of low- to moderate-density residential land use

**Application**

Areas within zoning districts R1 through R6

Consider wherever pedestrian volumes can be accommodated and curbside activity is low

**Design**

See geometric design guidance for SIDEWALK (2.2.1) and materials guidance for SIDEWALKS (3.1)

Ribbon sidewalks should be at least 5 feet wide or as required to match the existing ribbon width in the immediate neighborhood; they should be wider along arterials and collector roads

Planting strips adjacent to ribbon sidewalks must be planted with groundcover vegetation for erosion control if a STORMWATER MANAGEMENT PRACTICE (6.6) is not used; herbaceous plant material, preferably native or adapted species, should be used rather than grass wherever possible, as turf absorbs water from tree roots, has little benefit to habitat, and requires the use of pesticides, herbicides, fungicides, and lawnmowers that can potentially damage tree roots

Where there are fire hydrants in the planting strip adjacent to a ribbon sidewalk, a 5-foot-by-5-foot slab of 6-inch-thick concrete on 6-inch, crushed-stone base extending from the curb to the sidewalk is required

Similar considerations apply to other elements, such as lampposts and signal posts

Where feasible, utilize STORMWATER MANAGEMENT PRACTICE (6.6) within planting strip rather than groundcover vegetation alone to better manage stormwater
Curb Extension

An expansion of the curb line into the lane of the roadway adjacent to the curb (typically a parking lane) for a portion of a block either at a corner or mid-block. Also known as neckdowns, curb extensions can enhance pedestrian safety by reducing crossing distances, can relieve sidewalk crowding, and can provide space for functional elements such as seating, plantings, and furniture. In addition, two curb extensions can be located on either side of a street to create a MID-BLOCK NARROWING (2.2.2 c) or at an intersection to create a GATEWAY (2.3.3).

Benefits

- Calms traffic by physically and visually narrowing the roadway
- At a corner, slows turning vehicles and emphasizes the right-of-way of crossing pedestrians
- Shortens crossing distance, reducing pedestrian exposure and minimum required signal time for crossing
- Improves the ability of crossing pedestrians and drivers to see each other
- Makes the crosswalk more apparent to drivers, encouraging them to stop in advance of the crosswalk, and reduces illegal parking within crosswalk
- Reinforces lane discipline through intersection, preventing vehicle passing maneuvers in parking lane
- Provides additional pedestrian space and reduces crowding, particularly for queuing at crossings and bus stops or when located at a subway entrance or other protrusion
- Creates space that may be used to locate street furniture, bike parking, bus stop, public seating, street vendors, etc., potentially reducing sidewalk clutter
- Keeps fire hydrant zone clear when located in front of a hydrant
- Defines the ends of angle parking

Considerations

- Can discourage truck turns onto streets with No Truck regulations (See Rules of the City of New York, Title 34, Chapter 4, Section 4-13)
- May impact street drainage or require catch basin relocation
- May impact underground utilities
- May require loss of curbside parking
- May complicate delivery access and garbage removal
- May impact snow plows and street sweepers
Application

Only applicable within a curbside parking lane

Corners with marked pedestrian crosswalks in retail districts, directly adjacent to schools, at intersections with demonstrated pedestrian safety issues, on wide streets, or in areas of high foot traffic

At school crosswalks

At mid-block crossings (see MID-BLOCK NARROWING 2.2.2c)

Intersections where a two-way road transitions to oncoming one-way operation so as to block wrong-way traffic from proceeding straight onto the one-way portion (a “blockbuster”)

Next to subway entrances or other sidewalk pinch points so as to increase pedestrian walking or queuing space

Near fire hydrants, to keep clear of parked vehicles

Consider at all corners and pedestrian crossings

Consider elongated curb extensions for some or most of a block (i.e., a widened sidewalk with lay-by areas) in areas where a full sidewalk widening would be desirable but some loading, drop-off, or parking access must be maintained

Cannot be used where curbside travel (including bus, bicycle, or general traffic) lane exists, such as those created through peak-period parking restrictions

Feasibility of curb extensions is evaluated based on engineer review of design-vehicle turning movements

Design

Curb extension width is typically two feet less than the width of the parking lane. Minimum curb extension length is typically equal to the full width of the crosswalk, however it can be longer when appropriate or necessary

A fire truck turning zone with a 50-foot outside radius should be maintained clear of physical obstructions (signs, planters, non-flexible bollards, trees)

When a curb extension conflicts with design vehicle turning movements, the curb extension should be reduced in size rather than eliminated wherever possible

At crossings that may have low pedestrian visibility, curb extension should be long enough to “daylight” the crossing, i.e., provide open sight-lines to the pedestrian crossing for approaching motorists; the additional curb extension space can be used to provide plantings (see CURB EXTENSION [6.3.3]) or community facilities such as bicycle parking as long as visibility is not hindered

The design and placement of street furniture, trees, and plantings on a curb extension must not impede pedestrian flow, obstruct clear path, or interfere with “daylighting” the intersection, emergency operations, or sight lines

Pedestrian ramps should be aligned such that they serve as a continuation of the sidewalk, rather than within the radius of the curb extension, to accommodate direct pedestrian path

Curb extension must be designed so as to maintain drainage of stormwater from the gutter and not cause ponding; depending on site-specific grading conditions, this might include properly locating catch basins or utilizing design treatments that channel water through, around, or in

Between curb extension and the curbline

Where space permits, more functional curb extension designs, such as those with PLANTINGS (6.3), or COMMUNITY FACILITIES (2.2.2a), such as seating or bicycle parking, should be used whenever possible

Vertical elements should be used to alert drivers and snow plow operators to the presence of the curb extension

To reduce the cost and implementation time of curb extension, trench drains can be considered instead of catch-basin relocation if a maintenance partner exists to clean the trench drain

When curb extension is used at a fire hydrant, the length of the curb extension should be equal to or greater than the No Parking zone (typically 15 feet in either direction) and the hydrant should be moved onto the curb extension

Paving on curb extension should match that of the surrounding sidewalks

Locate trees and/or plantings within curb extension where appropriate. See TREE BEDS (6.1) and CURB EXTENSION (6.3.3)

Maximize permeable surface of curb extension

Where feasible, design planted areas within curb extension so as to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6)
CURB EXTENSION

Curb Extension: Community Facilities

Usage: Wide

Benefits
- Provides safety and traffic calming benefits as described in CURB EXTENSION (2.2.2)
- Provides space for functional sidewalk elements outside of the sidewalk clear path, freeing sidewalk space for movement
- Improves the public realm and creates useful public space, particularly in areas where public open space is in short supply
- Allows limited street space to serve multiple functions, thereby increasing the performance of street infrastructure

May encourage mode shift to walking by creating a more comfortable and enjoyable walking environment

Considerations
- Permits, revocable consents, and/or maintenance agreements may be required for certain elements
- Bike racks must be standard DOT design unless a permit is obtained from DOT

Application
- See application guidance for CURB EXTENSION (2.2.2)

Areas without sidewalk crowding where demand exists for the community facilities and a committed partner is willing to maintain any elements that require maintenance, such as seating; a maintenance partner is not needed for a DOT bike rack

Design
- See design guidance for CURB EXTENSION (2.2.2)
**Benefits**

Provides safety and traffic calming benefits as described in CURB EXTENSION (2.2.2)

Speeds bus movement on streets with traffic congestion by eliminating the need for buses to maneuver in and out of the moving lane

Speeds bus movement by reducing the likelihood of bus stops being blocked by stopped vehicles

Discourages non-bus encroachment into bus-only lanes

Can allow faster bus passenger boarding

Can provide comfort and convenience to bus riders through dedicated waiting space and inclusion of bus-related amenities

When utilized at a bus stop under an elevated train line, where the bus does not pull over to the sidewalk, provides a safer space for passengers to wait, as many currently stand in the roadway

Allows additional on-street parking as compared to a standard bus stop

**Application**

See application guidance for CURB EXTENSION (2.2.2)

At bus stops along bus routes where it has been determined by DOT and MTA NYCT that bus bulbs would enhance bus service

**Design**

For detailed design guidance, see Select Bus Service Station Design Guidelines (DOT & MTA NYCT, 2009)

See additional design guidance for CURB EXTENSION (2.2.2)

Bus bulbs should be long enough to encompass the front and rear doors of the buses that will be using it, and should extend the length of the bus stop whenever possible

Design BUS BULBS with care to accommodate accessibility needs, taking into account the full range of buses that might be using the stop

---

**A CURB EXTENSION at a bus stop that avoids the need for buses to pull in and out of the moving lane to pick up and discharge passengers.** Bus bulbs may also be designed to better support bus passengers through the inclusion of higher curbs, bus stop shelters, seating, pre-boarding payment equipment, and other bus-supportive facilities.
Two Curb Extensions that create a pinch point. A mid-block narrowing (also referred to as a “choker”) physically or visually constrains the roadway, thereby slowing vehicular traffic and alerting drivers to the presence of a mid-block crossing. The curb extensions themselves can be of any variety, for example with plantings or other functional elements. A mid-block narrowing is equivalent to a Gateway (2.3.3) located mid-block.

Benefits

Provides safety and traffic calming benefits as described in Curb Extension (2.2.2)

Calms mid-block traffic speeds, particularly if vertical elements (e.g., bollards, trees, bicycle parking, etc.) are included in Curb Extensions (2.2.2)

Improves drivers’ awareness of presence of crosswalk at mid-block crossing

Provides space for greening, community facilities, bicycle parking, and/or stormwater source control measures

Application

See application guidance for Curb Extension (2.2.2)

Local streets with demonstrated speeding issues and/or a mid-block crossing

At mid-block crossings on two-way streets, it is generally preferable to include a Raised Median (2.2.3) or Pedestrian Safety Island (2.2.4) rather than or in addition to a mid-block narrowing, when space allows

Mid-block narrowing: West 94th Street, Manhattan (Note: use of walls is not recommended by this manual)

Design

See design guidance for Curb Extension (2.2.2)

Reduce lane width at mid-block narrowing to impact vehicle speeds; on low-traffic residential streets, mid-block narrowing can be combined with other design treatments, including Raised Crosswalks (2.3.4), Raised Speed Reducers (2.3.2), and vertical elements for maximum effectiveness

Locate trees and/or plantings within curb extensions of mid-block narrowing where appropriate. See Tree Beds (6.1) and Curb Extension (6.3.3)

Maximize permeable surface of curb extension with vegetation, permeable paving, or both

Where feasible, design planted areas within mid-block curb extensions so as to capture stormwater according to current standards. See Stormwater Management Practices (6.6)
**Raised Median**

**Usage: Wide**

A raised area separating different lanes, traffic directions, or roadways within a street. The raised median can be either curb height (6–7 inches) or, where appropriate, 12–24 inches high. The width as well as design of raised medians can vary widely. They can range from narrow raised concrete islands to tree-lined promenades to intensively landscaped boulevard medians. In contrast to PEDESTRIAN SAFETY ISLAND (2.2.4), raised medians extend for most or all of the street block.

**Benefits**

- Reduces risk of left-turn and vehicle head-on collisions
- Calms traffic by narrowing roadway
- Enhances pedestrian safety and accessibility by reducing crossing distances and providing refuge for pedestrians to cross road in stages
- If designed for walking access, can provide additional pedestrian capacity
- Greens and beautifies the streetscape if it incorporates trees and/or plantings. See RAISED MEDIAN (6.2.1)
- Improves environmental quality and can incorporate stormwater source controls

**Considerations**

- Can provide space for a SIDEWALK (2.2.1) and/or SEPARATED BIKE PATH (2.1.1b), particularly as part of a boulevard treatment
- May impact underground utilities
- Design must account for impact of raised median on emergency vehicle movement and access
- Landscaping or stormwater source controls require a partner for ongoing maintenance
- Changes in traffic circulation resulting from addition of raised median should be understood so as to not force drivers to travel on inappropriate routes or make U-turns
- If continuous, raised median may prevent left turns into driveways on opposite side of street
2.2.3 Raised Median

Application

Two-way streets with two or more roadway travel lanes in total

Consider on all two-way multilane streets

On streets of limited width, it may be preferable in some situations to include other treatments (e.g., expanded sidewalks or dedicated transit or bicycle facilities) rather than a raised median if there is not adequate room for all treatments and travel lanes

Design

Raised medians should be wide enough to provide refuge to pedestrians at crossings: 5 feet minimum, 6 feet or greater preferred; when planted, 6 feet minimum. See RAISED MEDIANS (6.2.1)

Raised medians should extend beyond the crosswalk at intersections wherever possible, while accommodating vehicle turning movements; the “nose” of the raised median should include bollards to protect pedestrians from wayward vehicles

Provide a walkable path across the raised median at crossings. When the median is less than 17 feet wide, an 8-10-foot-wide cut-through, flush with the roadway, is appropriate. On medians wider than 17 feet, pedestrian ramps (1:12 grade with 5-foot landing areas) can be used to provide access

Provide a large pedestrian storage area at crossings to permit groups of pedestrians to safely wait to cross

Provide tactile cues for pedestrians with vision disabilities to indicate the border between the pedestrian refuge area and the motorized travel lanes

Include street trees, plantings, and unpaved or permeable surfaces wherever safe and feasible, using structural soil where appropriate. See TREE BEDS (6.1), RAISED MEDIAN (6.2.1), and POROUS CONCRETE (3.1.13)

Grade roadways to direct stormwater towards raised medians if the raised medians include stormwater source controls, for example through the use of double or inverted roadway crown

If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains; also consider visibility for motorists, cyclists, and pedestrians

Median with Greenstreet and sidewalk: Carlton Avenue, Brooklyn

Raised medians must be designed so as to maintain drainage of stormwater and not cause ponding

Locate trees and/or plantings within raised median. See TREE BEDS (6.1) and RAISED MEDIAN (6.2.1)

Maximize permeable surface of raised median

Where feasible, design planted areas within raised median so as to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6)
Pedestrian Safety Island

Usage: Wide

A raised area located at crosswalks that serves as pedestrian refuge separating traffic lanes or directions, particularly on wide roadways. Also known as a "median refuge island" and "Green Refuge Island." Used at pedestrian crossings when a full RAISED MEDIAN is not feasible. A pedestrian safety island confers most of the same benefits as full RAISED MEDIANS at pedestrian crossings. Full RAISED MEDIANS should be used rather than pedestrian safety islands wherever possible.

Benefits

- Enhances pedestrian safety and accessibility by reducing crossing distances and providing refuge for pedestrians to cross road in stages
- Calms traffic, especially left turns and through-movements, by narrowing roadway at intersection
- Reduces risk of vehicle left-turn and head-on collisions at intersection
- Can green and beautify the streetscape with trees and/or vegetation, potentially including stormwater source controls
- Trees increase the visibility of the island, thereby usually improving safety

Considerations

- May impact underground utilities
- Landscaping or stormwater source controls require a partner for ongoing maintenance

Application

See application guidance for RAISED MEDIAN (2.2.3)

Design

See design guidance for RAISED MEDIAN (2.2.3)

Typical island accommodates two street trees and, where appropriate, bell bollards. See TREE BEDS (6.1) and RAISED MEDIAN (CURB HEIGHT) (6.2.1a)
### 2.2.5 Median Barrier

**Median Barrier**

**Usage:** Limited

#### Benefits

- Reduces or eliminates short-cut and cut-through traffic
- When applied consistently to an area, reduces traffic speeds
- Can green and beautify the streetscape with trees and/or vegetation, improving environmental quality and potentially incorporating stormwater source controls
- Enhances safety at intersection by reducing potential vehicle movements and conflicts, particularly left turns
- Reduces risk of vehicle head-on collisions
- Reduces risk of motorists running a red light or stop sign when approaching from side street
- Calms traffic on side street by requiring turn and on major street by narrowing roadway
- Enhances pedestrian safety and accessibility by reducing crossing distances and providing refuge for pedestrians to cross the road in stages

#### Considerations

- May impact street drainage or require catch basin relocation
- May impact underground utilities
- Emergency vehicle access needs must be accommodated
- Landscaping or stormwater source controls require a partner for ongoing maintenance

#### Application

- Consider on local streets with speeding or cut-through/short-cutting issues
- One-way or two-way local streets at their intersections with two-way collector or arterial roadways

#### Design

- Design traffic diversion devices to impact motor vehicle movement but not bicycle movement; utilize bike channels or similar design strategies to allow passage by bicyclists
- Include planted areas and stormwater source controls within traffic diverters wherever possible when a maintenance partner is identified
- If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains
- Locate trees and/or plantings within diverter when appropriate. See TREE BEDS (6.1) and RAISED MEDIAN (6.2.1)
- Maximize permeable surface of diverter. See POROUS CONCRETE (3.1.13)
- Design any planted areas within diverter so as to capture stormwater according to current standards

#### Example

A RAISED MEDIAN or PEDESTRIAN SAFETY ISLAND extended through an intersection to prevent left turns and through-movements to and from the intersecting street. Pedestrian access can be maintained with pedestrian refuges and bicycle access with gaps in the median. As with typical RAISED MEDIANs, trees or plantings can be included within the median barrier.

The raised median on Canal Street extends through the intersection with Washington Street: Manhattan.
Traffic Calming
2.3.1 Lane Narrowing and Lane Removal

Lane Narrowing & Lane Removal

Usage: Wide

Benefits

Reduces opportunities for speeding and aggressive driving, thereby decreasing the severity and frequency of crashes

Organizes the roadway to provide clearer instruction to drivers, cyclists, and pedestrians

Provides space for pedestrian refuge islands, assigned turn lanes, angle parking, wide parking lanes, bus lanes, bicycle lanes, expanded sidewalks/pedestrian space, or other uses

Considerations

Traffic conditions must be considered in planning lane removals; detailed analysis may be needed

Commercial loading and other uses should be considered in planning lane narrowing

Planned uses, such as bus lanes or bicycle lanes, should be taken into consideration

Effects of narrowings on turning movements should be tested

Application

Consider lane narrowings on corridors with excessively wide lanes

Multilane corridors with excess capacity (more traffic capacity than traffic volume) are excellent candidates for lane removal

Multi-lane corridors may be good candidates for lane removal in concert with other treatments, such as signal timing changes

Design Guidelines

Lane narrowings and removals should result in standard-width lanes

When other treatments are included in a lane narrowing/removal, see specific guidelines for those treatments
GEOMETRY: TRAFFIC CALMING

 Raised Speed Reducer

**Usage: Wide**

**Benefits**

Compels drivers to travel at speeds no higher than the street’s design speed

A speed table can be used to provide a raised mid-block crossing in conjunction with a stop control

**Considerations**

Impacts emergency vehicle movement

Snow plows must be given advance warning

May generate additional noise

**Application**

Must be requested by a community, with approval based on a DOT field study of the location using speed survey, geometric, and street operations criteria

Avoid on streets that have any of the following characteristics:
- designated as “local” or “through” truck routes
- on MTA bus routes, tour-bus routes, or routes of any other bus operator
- emergency-vehicle response or snow emergency routes
- Fire Department house located on the block
- more than one moving lane per direction
- wider than 44 feet

The location can be investigated by DOT for a “Reduced School Speed Zone” if a speed reducer is not feasible but the street has an 85th percentile speed of 25 mph or higher and is near an eligible school

**Design**

Space raised speed reducers to maintain desired operating speeds

Appropriate warning signs and roadway markings should accompany raised speed reducers

Locate raised speed reducers in the middle of the roadway, with the gutters kept clear for proper road drainage

Use signage or other methods to alert operators of snow-clearing vehicles to the presence of raised speed reducers

While raised speed reducers (humps, tables, cushions) are an effective method to retrofit existing streets to reduce motor vehicle speeds in lieu of street reconstruction, all newly reconstructed streets should be comprehensively designed to achieve desired speeds, e.g., using appropriate roadway width and alignment, horizontal deflection, traffic controls, trees, and other traffic calming treatments

Utilize recycled content in paving materials

A raised area of a roadway that deflects both the wheels and frame of a traversing vehicle with the purpose of reducing vehicle speeds. The two basic types of raised speed reducers are speed humps and speed tables. Both are typically raised 3 to 4 inches above the level of the roadway, and both have a proven speed-reducing track record in New York City. While a speed hump is relatively short in length (e.g., 13 feet long), a speed table is longer (e.g., 22 to 30 feet long), with a flat section in the middle, sometimes including a RAISED CROSSWALK (2.3.4). SPEED CUSHION (2.3.2a) are a variation of speed humps designed to allow easier emergency vehicle, bus, or truck passage.

**Raised Speed Reducer**

**Usage: Wide**

A raised area of a roadway that deflects both the wheels and frame of a traversing vehicle with the purpose of reducing vehicle speeds. The two basic types of raised speed reducers are speed humps and speed tables. Both are typically raised 3 to 4 inches above the level of the roadway, and both have a proven speed-reducing track record in New York City. While a speed hump is relatively short in length (e.g., 13 feet long), a speed table is longer (e.g., 22 to 30 feet long), with a flat section in the middle, sometimes including a RAISED CROSSWALK (2.3.4). SPEED CUSHION (2.3.2a) are a variation of speed humps designed to allow easier emergency vehicle, bus, or truck passage.

**Benefits**

Compels drivers to travel at speeds no higher than the street’s design speed

A speed table can be used to provide a raised mid-block crossing in conjunction with a stop control

**Considerations**

Impacts emergency vehicle movement

Snow plows must be given advance warning

May generate additional noise

**Application**

Must be requested by a community, with approval based on a DOT field study of the location using speed survey, geometric, and street operations criteria

Avoid on streets that have any of the following characteristics:
- designated as “local” or “through” truck routes
- on MTA bus routes, tour-bus routes, or routes of any other bus operator
- emergency-vehicle response or snow emergency routes
- Fire Department house located on the block
- more than one moving lane per direction
- wider than 44 feet

The location can be investigated by DOT for a “Reduced School Speed Zone” if a speed reducer is not feasible but the street has an 85th percentile speed of 25 mph or higher and is near an eligible school

**Design**

Space raised speed reducers to maintain desired operating speeds

Appropriate warning signs and roadway markings should accompany raised speed reducers

Locate raised speed reducers in the middle of the roadway, with the gutters kept clear for proper road drainage

Use signage or other methods to alert operators of snow-clearing vehicles to the presence of raised speed reducers

While raised speed reducers (humps, tables, cushions) are an effective method to retrofit existing streets to reduce motor vehicle speeds in lieu of street reconstruction, all newly reconstructed streets should be comprehensively designed to achieve desired speeds, e.g., using appropriate roadway width and alignment, horizontal deflection, traffic controls, trees, and other traffic calming treatments

Utilize recycled content in paving materials

A raised area of a roadway that deflects both the wheels and frame of a traversing vehicle with the purpose of reducing vehicle speeds. The two basic types of raised speed reducers are speed humps and speed tables. Both are typically raised 3 to 4 inches above the level of the roadway, and both have a proven speed-reducing track record in New York City. While a speed hump is relatively short in length (e.g., 13 feet long), a speed table is longer (e.g., 22 to 30 feet long), with a flat section in the middle, sometimes including a RAISED CROSSWALK (2.3.4). SPEED CUSHION (2.3.2a) are a variation of speed humps designed to allow easier emergency vehicle, bus, or truck passage.
2.3.2a Raised Speed Reducer: Speed Cushion

**Speed Cushion**

**Usage:** Pilot

Narrow speed humps that reduce traffic speeds without causing vertical displacement of vehicles with wide wheel bases (trucks, buses, and emergency vehicles). Wide vehicles can travel over speed cushions at moderate speed after aligning properly, making them potentially appropriate for use on streets with low- to moderate-frequency emergency, truck, or bus routes.

**Benefits**

- See benefits of RAISED SPEED REDUCERS (2.3.2)
- Reduces motor vehicle speeds without hampering bus service or most commercial vehicles
- Quieter than speed humps on commercial routes
- Can be easily removed, relocated, or repositioned
- Available as an off-the-shelf product

**Considerations**

- Snow plows must be given advance warning

**Application**

- See application guidance for RAISED SPEED REDUCERS (2.3.2)
- Streets that qualify for RAISED SPEED REDUCERS, except for the presence of a truck, bus, or emergency vehicle route
- Consider on non-arterial roadways with speeding concerns
- Avoid on arterial roadways

**Design**

- See design guidance for RAISED SPEED REDUCERS (2.3.2)
- Spacing and dimensions of speed cushions are typically similar to those of other RAISED SPEED REDUCERS
Gateway

Usage: Limited

A combination of traffic-calming and visual measures used at the entrance to a low-speed street to slow entering vehicles and discourage through-traffic. Useful at all roadway transitions to slower-speed environments, gateways are especially suited to entrances to residential side streets and SHARED STREETS. The design elements of a gateway can include CURB EXTENSIONS (2.2.2), a RAISED CROSSWALK (2.3.4) or driveway treatment, a RAISED MEDIAN (2.2.3), landscaping or trees, and community facilities such as seating and public art.

Benefits

- Decreases vehicular speeds and discourages through-traffic without blocking or prohibiting vehicular access
- Demarcates transitions to low-speed, shared street (2.1.3), or pedestrian-oriented areas
- Provides pedestrians with priority movement across the treated leg of the intersection

Considerations

- May impact street drainage or require catch basin relocation
- May impact underground utilities
- May require loss of curbside parking in some cases
- Community facilities typically necessitate the presence of a maintenance partner
- Many community facilities and sidewalk items require a permit or revocable consent from the city

Application

Entrances to SHARED STREETS

Consider at entrances to streets with low vehicle volumes or speeds from streets with high vehicle volumes or speeds

Design

Include at a minimum CURB EXTENSIONS (2.2.2) to narrow the roadway; preferably, vertical deflection should also be created using a RAISED CROSSWALK or ramped driveway treatment; if the street is two-way, a RAISED MEDIAN (2.2.3) or PEDESTRIAN SAFETY ISLAND (2.2.4) can be included, space permitting.

Other design elements can “narrow” a street visually, including plantings, public art, bicycle parking, and community facilities such as seating.

If gateway includes a RAISED CROSSWALK (2.3.4), snow plows must be given advance warning.

If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains.

Where feasible, design planted areas within gateway so as to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6).

If gateway includes PLANTED CURB EXTENSIONS, see design guidance for PLANTED CURB EXTENSIONS (6.3.3).

ABOVE: Gateway at transition from local residential street: Prospect Place, Brooklyn
LEFT: Gateway to residential street: West 11th Street at Seventh Avenue South, Manhattan
2.3.4 Raised Crosswalk

**Raised Crosswalk**

Usage: Limited

**Benefits**

- Compels drivers to travel at speeds no higher than the street’s design speed
- Improves drivers’ awareness of presence of pedestrian crossing, particularly at mid-block crossing locations
- Used at street GATEWAYS (2.3.3), can alert drivers that they are entering a slower-speed, pedestrian-oriented street environment
- Allows convenient pedestrian circulation between high foot traffic destinations on opposite sides of a street

**Considerations**

- May impact street drainage or require catch basin relocation
- Attention should be given to accommodation of and navigation by people with vision disabilities

**Application**

- Existing stop-controlled crosswalks or other locations where demand exists for a stop-controlled pedestrian crossing that also meet the criteria for RAISED SPEED REDUCERS (2.3.1)
- Consider at areas of particularly high pedestrian crossing demand on narrower streets (maximum of two moving lanes), such as locations with pedestrian generators (e.g., major commercial or cultural destinations, transit entrances, parks) on opposite sides of the street

**Design**

- Appropriate warning signs and roadway markings should accompany raised crosswalk
- Use signage or other methods to alert snow-clearing vehicle operators to the presence of raised crosswalk
- Detectable warning strips with high color contrast from sidewalk surface should be provided at crosswalk location

**Use enhanced, high-visibility street materials to further draw attention to raised crosswalk**

- See design guidance for RAISED SPEED REDUCERS (2.3.2)
- Utilize recycled content in paving materials
Chicane

Usage: Pilot

Benefits
Forces drivers to drive more slowly and with greater awareness, particularly at mid-block locations.

Can green and beautify the streetscape with trees and/or vegetation, improving environmental quality and potentially incorporating stormwater source controls.

Considerations
May impact street drainage or require catch basin relocation.

May impact underground utilities.

May require loss of curbside parking.

Landscaping or stormwater source controls require a partner for ongoing maintenance.

If outfitted to capture stormwater, careful consideration must be given to design, overflow control, and plant species.

May impact snow plows and street sweepers.

Application
Consider on narrower, low-volume, local streets (maximum of two moving lanes) with demonstrated speeding issues.

Avoid on bus routes, truck routes, and major bicycle routes.

Design
The simplest and most basic approach to create a chicane is to alternate on-street parking (parallel or angled) from one side to the other; in this case, CURB EXTENSIONS (2.2.2) at the beginning and end of each grouping of parking.

If utilizing CURB EXTENSIONS, see CURB EXTENSION section for general design considerations.

Use vertical elements to alert drivers and snow plow operators to presence of chicanes.

Locate trees and/or plantings within chicane curb extensions when appropriate. See TREE BEDS (6.1) and ROADWAY PLANTINGS (6.2).

Maximize permeable surface of chicane curb extensions.

Where feasible, design planted areas within chicane curb extensions to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6).

A chicane is a serpentine roadway alignment or series of staggered CURB EXTENSIONS to encourage lower driving speeds through horizontal deflection. Chicanes discourage or make it impossible for drivers to drive in a straight line. This can reduce vehicular speeds.
2.3.6 Neighborhood Traffic Circle

A round traffic island in the center of a traditional intersection. Primarily applicable to lower-traffic intersections, neighborhood traffic circles can provide many of the advantages of full ROUNDABOUTS, (2.3.7) but using much less space.

**Usage:** Pilot

**Benefits**

- Reduces speeds and crash rates, particularly when applied consistently to an area
- Eliminates possibility of vehicle head-on collisions
- Can green and beautify the streetscape with trees and/or vegetation, improving environmental quality
- Inclusion of plantings or art within the island creates an attractive focal point for the neighborhood

**Considerations**

- May impact underground utilities
- Landscaping requires a partner for ongoing maintenance
- Attention should be given to accommodation of and navigation by people with vision and/or ambulatory disabilities

**Application**

- Consider at existing stop-controlled intersections, particularly all-way stops
- Consider at intersections of streets with low target speeds (25 mph or below) or low vehicle volumes
- ROUNDABOUT (2.3.7) should be used instead at high-volume or large intersections

**Design**

- Design speeds for movement around the circle should be 10 to 15 mph; exit speeds should be limited to 1.5 mph through the circle’s design wherever possible
- Use signs within the center island and reflective paint on the curb to improve center island visibility
- Include street tree(s) wherever possible; include planted areas when a maintenance partner is identified
- A protective apron of concrete or textured pavement may be provided around the circle to accommodate wide-turning vehicles; where extreme geometric constraints exist and truck volumes are low, trucks may be accommodated by use of a fully mountable roundabout island
- Use small curb radii where right turns are made
- Install “Keep Right” or similar signs directing drivers to proceed to the right around the circle through the intersection
- If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains
- Minimize impervious paved areas and utilize permeable paving wherever possible
- Locate trees and/or plantings within neighborhood traffic circle island. See TREE BEDS (6.1) and ROADWAY PLANTINGS (6.2)
- Maximize permeable surface of neighborhood traffic circle island
- Where feasible, design planted areas within neighborhood traffic circle island so as to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6)
Roundabout

Usage: Limited

Benefits

Reduces top vehicular speeds at signalized intersections, thereby decreasing the severity of crashes

Eliminates possibility of vehicle head-on collisions

Eliminates left turns, a primary cause of crashes

Enhances pedestrian safety when used at appropriate intersections

Allows simultaneous movement of crossing vehicular streams, often processing vehicular traffic more efficiently than signalization

When used in place of a stop- or signal-controlled intersection, may reduce vehicle emissions and travel times by reducing start-and-stop driving

Reduces need to widen streets approaching intersection to store vehicles under signalized operation

Can green and beautify the streetscape with trees and/or plantings, improving environmental quality and potentially incorporating stormwater source controls

Inclusion of public open space, vegetation or art within the roundabout island creates an attractive focal point for the neighborhood

An intersection with circular, one-way (counter-clockwise) traffic around a central circle in which entering traffic yields to traffic already in the roundabout. Roundabouts can vary in size (diameter) and number of lanes and can be designed as unsignalized or signalized intersections. Roundabouts are distinguished from "old-style" traffic circles/rotaries by their rules for yielding and key design features such as horizontal deflection at entries.
<table>
<thead>
<tr>
<th>Considerations</th>
<th>Application</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>May require increased spatial footprint for intersection, but not approaches</td>
<td>Intersections with 1) no more than 80–90% of volume on the main facility and 2) having at least three approaches, high vehicle-turning volumes or percentages, or speeding issues</td>
<td>Deflection should be created for entering vehicles to reinforce yielding behavior; at two-way legs of the intersection, use splitter islands to provide deflection as well as to allow pedestrians to cross in two segments</td>
</tr>
<tr>
<td>May impact street drainage or require catch basin relocation</td>
<td>Consider at locations with poor safety records, or where signalization has led or may lead to operational issues for pedestrians or bicyclists</td>
<td>Detectable warning strips should be provided at all crosswalk locations with high color contrast from the sidewalk surface</td>
</tr>
<tr>
<td>May impact underground utilities</td>
<td>As a gateway treatment for low-speed (25 mph speed limit or less) or SHARED STREETS (2.1.3)</td>
<td>Limit entry and exit speeds through deflection and/or raised crosswalks</td>
</tr>
<tr>
<td>May require loss of curbside parking</td>
<td></td>
<td>Curves should accommodate the design vehicle; use an apron of textured paving around the central island to slow motor vehicle movements while accommodating larger vehicles such as trucks</td>
</tr>
<tr>
<td>Landscaping or stormwater source controls require a partner for ongoing maintenance</td>
<td></td>
<td>To improve center island visibility, use reflective signs within the center island and reflective paint on the curb</td>
</tr>
<tr>
<td>If outfitted to capture stormwater, careful consideration must be given to design, overflow control, and plant species</td>
<td></td>
<td>Include street tree(s) wherever possible; include planted areas and stormwater source controls when a maintenance partner is identified</td>
</tr>
<tr>
<td>Attention should be given to accommodation of and navigation by people with vision and/or ambulatory disabilities</td>
<td></td>
<td>If work includes tree planting, consider the location of utility infrastructure, including DEP sewers and water mains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimize impervious paved areas and utilize permeable paving wherever possible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Locate trees and/or plantings within roundabout islands. See TREE BEDS (6.1) and ROADWAY PLANTINGS (6.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximize permeable surface of roundabout islands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Where feasible, design planted areas within roundabout islands so as to capture stormwater according to current standards. See STORMWATER MANAGEMENT PRACTICES (6.6)</td>
</tr>
</tbody>
</table>
Raised Intersection

An entire intersection raised above the level of the surrounding roadways. The intersection is typically raised to sidewalk height.

Usage: Pilot

Benefits
- Vertical deflection at entry to intersection encourages reduced vehicle speeds
- Improves drivers’ awareness of presence of crossings
- Visually turns intersection into a pedestrian-oriented zone
- Enhances access for people with disabilities

Considerations
- May impact street drainage or require catch basin relocation
- Snow plows must be given advance warning

Application
- Stop-controlled intersections with a high volume of pedestrian crossings and low target vehicle speeds (e.g., 25 mph or below)
- Stop-controlled intersections with a history of pedestrian crashes or speeding issues
- Stop-controlled intersections where enhancing pedestrian movement is a major goal, such as transit stops or commercial areas
- Avoid on truck routes and at other locations where RAISED SPEED REDUCERS (2.3.2) are not appropriate

Design
- Slope of entrance ramps for motorized traffic can be steep or shallow, depending on target speeds
- Use enhanced, high-visibility street materials to further draw attention to raised intersection
- Minimize impervious paved areas and utilize permeable paving wherever possible
- Increase SRI value of paved surfaces to reduce urban heat island impact
- Utilize recycled content in paving materials
- Coordinate streetscape/utility work to minimize street cuts

ABOVE: Raised intersection: London, United Kingdom (Note: for illustrative purposes only)
LEFT: Raised intersection: Cambridge, Massachusetts (Credit: Cara Seiderman)