

Transit Stops & Stations: Stop spacing, location, & infrastructure

Britt Tanner May 7, 2015

Policy Tool: Stop Spacing Guidelines

Challenges of Previous Guidelines

- Existing standard not implemented uniformly
- Did not consider block lengths, delay to on-board passengers or stop usage

	Previous Policy
Bus	~ 800' to 1,000' (grade ≤ 10%)
	500' to 600 '(grade 10%-15%)
	Bus stops may be spaced as close as 300' to 400'(grade > 15%)
Surface	~ 1,000 to 1,200 feet

Policy Tool: Stop Spacing Guidelines

	Previous Policy	New Guidelines
Bus	~ 800' to 1,000' (grade ≤ 10%)	~ 800' to 1,360' (grade ≤ 10%)
	500' to 600 '(grade 10%-15%)	Bus stops may be as close as 500' (grade > 10%)
	Bus stops may be spaced as close as 300' to 400'(grade > 15%)	Limited and Express stops to be spaced on a case-by-case basis
Surface Rail	~ 1,000 to 1,200 feet	~ 900 to 1,500 feet

Stop Spacing Example: Western San Francisco:

East-west block length - 310'

Former guideline: 3 blocks 930'

Proposed: 3-4 blocks 930' to 1240'

North-south block length – 680'

Former guideline: impossible

Proposed: 2 blocks (1360')

Transit Stop Spacing Guidelines for Various Cities (2012)

Agency	Туре	Spacing Guideline
Chicago Transit	Local	No more than 1,320 feet
Authority	Express	½ to 1 mile (2,640 to 5,280 feet)
Seattle / King	Local	Generally 4 to 6 stops per mile (880 to
County Transit		1,320 feet), up to maximum of 8 stops
		per mile (660 feet)
		May be as close as 500 feet
Washington	Local Bus	4-5 stops per mile (1,056 to 1,320 feet)
Metropolitan Area	Enhanced Service/	2-3 stops per mile (1,760 to 2,640 feet)
Transit Authority	Limited Stop	
(Washington, DC)		
Portland Tri-Met	Dense	3 blocks/780 feet
	development	
	Low to mid density	4 blocks/1,000 feet
	development	
AC Transit	Local	800 to 1,300 feet
	Rapid	1,700 to 5,000 feet
	Transbay	1,000 to 2,600 feet

Optimizing Transit Stop Locations

Signalized intersections:
Move transit stops after
the intersection, get
Muni through more
green lights and
minimize stopping.

Stop sign intersections: Put transit stops at the sign so Muni can stop and pick up passengers at the same time.

Longer bus zones

Gives Muni more space to get closer to the curb and out of traffic. Makes streets safer.

Policy Tool: Bus zone length guidelines

- Bus zones sized by vehicle type
- Plan for two buses when combined frequency is under 5 minutes

	Type of Vehicle and Zone Length (Ft.)			
Stop Position	40' Bus	2x40' Bus	60' Bus	2x60' Bus
Midblock	120	185	145	210
Nearside	100	145	120	185
Farside	80	125	100	165
Farside (After	140	140	160	230
right turn)				

Transit Bulbs

- Sidewalk extension into the street at transit zones, typically the width of the parking lane
- Reduces the need for buses to pull in and out when picking up customers; bulbs can reduce lost time pulling back into traffic
- Challenges: Can block a lane of traffic; must carefully consider design on two-lane roads

Transit Bulbs

Example: Carl/Cole, San Francisco

- Transit bulbs added in 2012 at busiest stops (~2,000 daily boardings)
- Encourages boarding from all doors with less front-door crowding
- Separates waiting passengers from through-pedestrians
- Ongoing work to add streetscape amenities

Before After

Policy Tool: Bus Bulb Guidelines

	Type of Vehicle and Appropriate Zone Length (Ft.)			
Stop Position		2x40'		2x60'
(Bus Bulbs)	40' Bus	Bus	60' Bus	Bus
Midblock	35	80	55	115
Nearside	35	80	55	115
Farside	45	90	65	130
Farside (After	Design on case-by-case basis			
right turn)	_			

Transit Island Design - Geometrics

Boarding islands

Photo credit: streetsblog

Boarding Island Design Criteria

Width

- Minimum of 8' clear for ADA boarding.
- Need to be 9' wide if you have a continuous railing (6" for curb, plus railing)

Length

- Minimum driven by distance to rear doors
- Maximum typically 2 vehicle-lengths
 - Passenger convenience, ADA issues if pax need to access 3rd bus
- Include buffer for operator flexibility and bike racks

Elevation - Level Boarding?

- Low-floor buses are 14" high, but can vary from 13-15"
- New Flyer buses have lug nuts that protrude from wheel making it difficult to achieve 3' maximum gap

Wheelchair ramp? Bikes?

- Wheelchair ramp intersects 14" platform making it unusable
- 14" high platform adds difficulty for accessing platform after loading bike on front bike racks

Bridge Plates

- Can overcome gap with bridge plate for middle and rear doors
- Front door can't have bridge plate due to wheelchair ramp
 - Railing to block off front door at level boarding stations
 - Fewer doors increases dwell times at high ridership stops
 - Changes wheelchair access door depending on stop location
- Need bridge plates all buses that might use BRT segment
- More potential failure points

Peer Agencies

Agency	Min gap	Ave gap	Platform
Health Line ¹ (Cleveland, OH)	4 inches	8.11 and 5.92 (depending on station)	14" platform (? Missing info)
EmX ¹ (Eugene, OR)	6.5	8.55 to 9.73 inches	14" platform with bridge plates; block front door
WMATA - Arlington / Alexandria			10" platform
Looplink (Chicago, IL)	(in design)		11" platform
AC Transit (Oakland)	(in design)		Bridge plates

¹Data from National Bus Rapid Transit Institute Study

SF – Boarding Island Elevation

- 6' standard curb height for islands
- no painted bus boarding islands
 - low-floor bus with flip-out wheelchair ramp unable to provide 8% grade from street level to bus

Transit Island Design – Furnishings/Passenger Amenities

Photo ideas: laser cut rail - Van Ness BRT design

Calculating ADA clear zones

Assumptions:

- Maintain 10' clear to 8' from curb at front of each bus (8'x5' ADA zone, but expand to 10' for flexibility)
 - Place shelters approximately 10' back from each 60' bus stopping point (@10-26, 75-91 and 140-156 assuming 16' long shelter. (*Assume the 90-100' clear zone would be shifted to 91-101 feet.)
- Keep 5' clear on remainder of bus zone (26-45, 55-65, 100-110, 120-130, 156-185'). When placing anything in this zone, consider passengers deboarding and keep furniture zone permeable.

Layout furnishing zones

Transit Island Design – Cycle Tracks

Cycle track reduces friction

Photo Ideas

- Polk Cycle track (sleek railing)
 Connecting the City concept for Market St
- SFMTA draft accessibility toolbox for bikeways – illustrates raised crossing

Raised crosswalk serves as speed table

Cycle Track & Transit

Better Market Street conceptual design:

- Cycle track height: 2"
- Cycle track width: 7' or wider
- Cycle track at platforms:
 - EITHER 7' allows side-by side riding
 OR 5' (at pinch points) encourages single row of bicycles but may create bottleneck
- Boarding island access:
 - Midblock: raised crosswalk as speed table
 - Intersection: directly from crosswalk