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Abstract: This article describes the development and
implementation of adaptive transit signal priority (TSP)
on an actuated dual-ring traffic signal control system. Af-
ter providing an overview of architecture design of the
adaptive TSP system, the article presents an adaptive TSP
optimization model that optimizes green splits for three
consecutive cycles to minimize the weighted sum of tran-
sit vehicle delay and other traffic delay, considering the
safety and other operational constraints under the dual-
ring structure of signal control. The model is illustrated
using a numerical example under medium and heavily
congested situations. The findings from a field opera-
tional test are also reported to validate and demonstrate
the developed TSP system. At a congested intersection,
it is found that the average bus delay and average traf-
fic delay along the bus movement direction were reduced
by approximately 43% and 16 %, respectively. Moreover,
the average delay of cross-street traffic was increased by
about 12%.
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1 INTRODUCTION

Transit signal priority (TSP) is an operational strat-
egy that facilitates in-service transit vehicles passing
through signalized intersections. It can reduce transit
delay at intersections and improve its on-time perfor-
mance or schedule adherence, thereby increasing the
quality of transit service. TSP has been implemented in
Europe and North America since 1968 (Courage and
Wallace, 1977; Evans and Skiles, 1970; ITS America,
2004). Early adoptions were not very successful because
the negative impact on other traffic was not well con-
sidered. In recent years, its deployment has been grow-
ing rapidly in the United States with more considera-
tion on balancing the benefits and negative impacts of
TSP.

TSP systems may be categorized into three types:
passive, active, and adaptive (ITS America, 2004). Pas-
sive priority strategies are to develop signal timings to
favor transit vehicles along signalized arterials. They
are often applied to fixed-time signal control systems
and do not require transit vehicle detection. Such
strategies only work well when transit operations are
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predictable and frequent, and traffic demand is low
(Vincent et al., 1978). On the other hand, active TSP
systems adopt selective vehicle detections to detect ap-
proaching transit vehicles and adjust signal timings in a
predefined manner to provide, for example, early green,
green extension, or special transit phase to them. A ma-
jority of the TSP deployments in the United States are
active systems (e.g., Fehon et al., 2004; Kimpel et al.,
2004). These deployments have demonstrated positive
effects on improving transit service quality. In the liter-
ature, Link and Shalaby (2003) applied an artificial in-
telligence method to optimize green phase durations to
reduce transit headway deviations. They also conducted
a simulation study to demonstrate the model perfor-
mance on reducing transit headway deviations with lim-
ited impact on other traffic. Janos and Furth (2002) pro-
posed a rule-based TSP system for the transit system
in San Juan, Puerto Rico that has an extremely high
serving frequency. Nichols and Bullock (2004) have
discussed the use of global positioning system (GPS)
technology for estimating an upper bound on the po-
tential benefits of active TSP systems. However, many
active TSP systems result in substantial variability in the
impacts to other traffic, because (1) the TSP benefits
and negative impacts are not explicitly balanced; (2) a
“point” detection is often used in the close proximity of
the intersection. This “short notice” only gives the signal
control system limited lead time to borrow “seconds”
from the remaining phases, which inevitably causes de-
lay to the traffic served by these phases.

In contrast, adaptive TSP systems provide priority to
transit vehicles while at the same time trying to mini-
mize negative impacts to other traffic. A typical adap-
tive TSP system may consist of three important com-
ponents: (1) a continuous detection that can detect an
approaching transit vehicle continuously, so that its ar-
rival time can be predicted and updated in a real-time
manner; (2) communication links among transit vehicle,
priority request system and signal controllers to share
transit vehicle’s arrival time, real-time traffic and pedes-
trian condition, signal status, and real-time signal timing
strategy; (3) a signal control algorithm that adjusts the
timing to provide priority while explicitly considering
the impacts to the rest of the traffic and ensuring traf-
fic and pedestrian safety. The signal control algorithm
should gracefully make a trade-off between transit de-
lay and traffic delay and adapt to the movement of the
transit vehicle and the prevailing traffic condition.

Most adaptive TSP systems have been coupled with
adaptive signal control systems, because the latter pos-
sesses the capability of inferring the prevailing “system-
wide” traffic condition, forecasting the evolution of the
traffic condition, and optimizing signal timing in real
time, for example, SCATS (Lowrie, 1982), SCOOT
(Hunt et al., 1981), UTOPIA (Turksma, 2001), and

RHODES (Mirchandani et al., 2001) among others.
However, a big share (according to Gettman et al.,
2007, over 90%) of signals in the United States is still
closed-loop actuated with the dual-ring structure. At the
same time, wide-scale implementation of adaptive con-
trol systems may be many years away, partly due to the
associated high costs for implementation and mainte-
nance (Smith et al., 2002). Therefore, it may be more
cost-effective to implement adaptive TSP on actuated
control systems than replacing the existing traffic con-
trol system with another adaptive traffic control system.
We believe that such adaptive TSP systems would have
the potential for large-scale deployment, thereby lead-
ing to fairly significant benefits.

Very limited research has been conducted in devel-
oping adaptive TSP on actuated systems. Unlike adap-
tive traffic signal control, actuated signal control relies
on actuation from detection but has no quantitative ob-
jective. Therefore, implementing adaptive TSP on an
actuated system is very different from realizing adap-
tive TSP on an adaptive traffic control system. For ex-
ample, Head et al. (2006) proposed a decision model
based on the precedence graph for priority control. Such
model presents an analytical framework for the analysis
of complex controller behavior.

Implementation of adaptive TSP on actuated signal
control systems requires additional effort of addressing
the incapability, insufficiency, or inflexibility of detec-
tion means, communications and signal controllers em-
ployed in those systems. This article develops and im-
plements an adaptive TSP system over an actuated con-
trol system. The remainder of the article is organized
as follows. Section 2 provides an overview of architec-
ture design of the TSP system and Section 3 presents an
adaptive TSP optimization model, including general as-
sumptions, model inputs and outputs, formulations, so-
lution procedure, and a numerical example. Section 4
then reports a field operational test of the developed
TSP system. Finally, Section 5 offers some concluding
remarks and recommendations for further research.

2 SYSTEM ARCHITECTURE

The physical parties directly or indirectly involved in
a TSP system include transit vehicles, transit manage-
ment center, signal control system, traffic management
center, transit vehicle detection means, and communi-
cations links among them. In terms of functionality,
every implementation of a TSP system shall have two
primary components: priority request generator (PRG)
and priority request server (PRS). The former aims to
initiate a priority request while the latter manages and
prioritizes one or more priority requests and generates
service requests, which are then sent to and executed by
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Fig. 1. System architecture for a prototype adaptive TSP system.

signal controllers (AASHTO/ITE/NEMA, 2008). PRG
and PRS can be physically placed in different loca-
tions and fulfilled by various means, thereby resulting
in multiple system architectures available for a TSP
implementation.

The system architecture of the developed adaptive
TSP system is illustrated by Figure 1 and elaborated as
follows:

2.1 Fleet vehicles with location detections

The adaptive TSP system uses global positioning sys-
tem (GPS) on buses as detection means to continuously
monitor bus locations. Bus arrival times to intersections
are predicted and updated by an arrival time predictor
(ATP). Many previous studies have conducted bus ar-
rival time prediction using regression models (Tan et al.,
2007; Zhou et al., 2004), Kalman filtering (Wall and
Dailey, 1999), or neural networks (Chien et al., 2002).
In this study, we adopted the regression model-based ar-
rival time predictor. This concept allows all buses instru-
mented with GPS/Automatic vehicle location (AVL)
systems to become signal priority capable without ad-
ditional equipment on buses. Many transit agencies
have deployed or planned to deploy GPS/AVL sys-
tems to their fleets. In 2006, 56% of fixed route buses
in the United States are equipped with such a system
(USDOT, 2008).

2.2 Signal control and traffic detection systems in the
field

As previously mentioned, the adaptive TSP system is
built upon a distributed closed-loop signal control sys-
tem where controllers receive calls or actuations from
inductive loop detectors, indicating that a service is de-
manded for a particular movement. Arrival and depar-

ture traffic counts and occupancies can be made avail-
able. In addition, high frequency (e.g., 1HZ or 0.5HZ)
signal status information can be archived and retrieved
for all phases. Such real-time information is essential
for dynamic traffic operation (e.g., Hooshdar and Adeli,
2004).

2.3 Traffic management center with priority request
system

The PRG and PRS are hosted by a TSP master com-
puter and physically located in the traffic management
center as well as the ATP and a real-time database. The
TSP master computer is connected with the super mas-
ter of the signal control system through a direct serial
port connection, allowing traffic data and signal status
to be received by the real-time database. And, bus sta-
tus data are also received by the database via a wireless
communication.

An adaptive TSP model, embedded in the PRG, uses
information of predicted bus arrival information, esti-
mated queue condition, signal status, and pedestrian
presence to optimize TSP strategies. The PRG sends
a priority request message to the PRS whenever a
bus needs it and a check-out request after the vehi-
cle has passed the signalized intersection. Upon receiv-
ing priority requests from multiple buses, the PRS will
prioritize all the different priority requests based on the
requested priority treatments, requested phase, and de-
sired service time, and then generate a service request
and eventually send the service request to signal con-
trollers for execution. It is noted that PRS in the pro-
posed model follows a first-come-first-serve rule and
only considers the time when the service is requested
to prioritize requests. With additional information of
schedule adherence or number of passengers on board,
PRS can better prioritize requests.
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Fig. 2. Definition of standard NEMA phases, rings, and barrier.

On account of fluctuating traffic conditions and vari-
ous driver behaviors, there are uncertainties in predic-
tions of arrival times at downstream intersections. Thus,
the closer buses get to the intersections the higher the
predictions’ confidence levels will be due to fewer un-
certainties. So the later the PRG generates a TSP re-
quest, the better data input it is based on. However,
the earlier the PRG can send the service request, the
more flexibly the signal controller is able to adjust sig-
nal timings. There is no optimal location or time to gen-
erate a TSP request. PRG keeps listening to the real-
time inputs, for example, bus arrival time, signal status,
pedestrian button information, and traffic flows. Based
on such latest information, PRG will update its request
if necessary. PRS will check difference among requests
and send the appropriate one to signal controllers.

3 ADAPTIVE TSP OPTIMIZATION MODEL

The core of the adaptive TSP system is a TSP algorithm
that manipulates actuated signal controllers to grant pri-
ority to buses. This section will introduce the model
formulation and solution algorithm, followed by a nu-
merical example. For other developments, such as ATP,
readers of interest may refer to Zhou et al. (2004).

3.1 General consideration and assumption

A timing optimization model is developed to minimize
a weighted sum of traffic and bus delay at an isolated in-
tersection. To facilitate the model formulation, the fol-
lowing consideration and assumptions are made about
intersection geometry, traffic demand, and signal set-
tings:

1. The model considers a single bus request for one
particular intersection along a corridor that is
coordinated by an actuated system. As defined
by National Electrical Manufacturers Association

(NEMA) on Figure 2, movements 1, 6,2, and 5 are
on the main corridor streets; movements 4, 7, 3,
and 8 are on cross streets. Movement 2 or 6 is the
sync movement, which actually represents the co-
ordination direction.

2. A new definition for signal cycle is used to facili-
tate the formulation. In contrast to the traditional
NEMA-defined signal cycle, which references to
the on/off of sync movements, we refer a cycle with
respect to the onset of cross-street movements. It is
noted that the new definition does not impact the
model outputs as described below.

3. The adaptive TSP model attempts to change green
splits for at most three consecutive cycles.

4. Traffic demand fluctuates across time-of-day
(TOD). It is assumed the arrival flow within three
consecutive cycles is stationary. Moreover, the in-
tersection capacity (saturation flow) is assumed to
be stationary. It is noted that accurate estimation
of traffic arrival flows and mixed-flow traffic capac-
ity can be obtained as shown in Dharia and Adel,
2003; Jiang and Adeli, 2004a, b, 2005; Xie et al.,
2007; Vlahogianni et al., 2008; Stathopoulos et al.,
2008; and Washburn and Cruz-Casas, 2010. TSP
operations should not cause residual queues for
any movement after three TSP control cycles. It
is noted that the number of cycles for transitions
can be readily customized in the proposed model.
The intersection with high traffic demand on all ap-
proaches might need more cycles in transition than
the intersection with low traffic demands.

3.2 Inputs and outputs

As shown in Figure 3, the optimization model takes five
real-time inputs, including bus arrival time and sched-
ule adherence (early, on time, or late) generated and
updated by ATP; short-term traffic demand prediction
obtained by using a moving average method that ana-
lyzes the time-series traffic counts from traffic detectors;
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pedestrian calls and online signal status received in real
time from the signal controller; and other static inputs
such as signal timing parameters (e.g., cycle length and
minimum green) and saturation flow rates, which are in-
variant within a pattern typically defined by time of day.

The model outputs are priority requests in the form
of movement splits. The movement splits can be con-
verted to any form of controllable parameter, for ex-
ample, green split, force-off point, or maximum green.
Zhou et al. (2004) validated that 170E signal controller,
a popular model for actuated systems primarily in Cali-
fornia, New York, as well as some other states, is capa-
ble of performing more adaptively through online up-
dating timing parameters, such as force-off points, gaps,
and maximum green, etc. NEMA-type controller, the
other popular model of traffic signal controllers, is also
capable of performing such operations. However, an ac-
tuated control system may not be able to work the same
way as an adaptive system due to two constraints in
their control logic: the first one is cycle length constraint,
which requires the duration between the end of the sync
movement and the end of the next sync movement to
be a constant while the other concerns the movement
sequence. No movement can be revisited before the cy-
cle ends in many controllers (Some latest version of the
control firmware has been modified to allow longer cy-
cles and phase reservice. Such features are not consid-
ered in the article.). Essentially, both constraints aim
to keep all signals of the corridor in coordination and
make the control logic simple and applicable to the field
controllers. As neither constraint can be overridden, the
proposed model must satisfy them.

3.3 Model formulation

As aforementioned, the optimization model manipu-
lates movement splits in three consecutive cycles for an
approaching bus. We denote the cycle that contains the
predicted bus arrival time as cycle 1. Correspondingly,
the previous and following cycles are labeled cycle 0 and
2, respectively. The TSP model confirms accurate pre-
diction of bus arrival by the end of cycle 0, and provides
bus priority in cycle 1, and then uses cycle 2 as a transi-
tion cycle to compensate the loss of other traffic due to
the priority operation. Note that the signal cycles men-
tioned here and hereinafter are based on our definition
in Section 3.1.

Phase sequence can be defined by lead-lag relation-
ships between the four conflicting movement pairs: 1&2,
3&4, 5&6, and 7&8. Four binary variables are intro-
duced in (1) to uniquely represent a particular phase
sequence.

1, if mov'i is lead
L= ) . , Vi=1,3,57 (1)
0, if moviislag

Figure 4 shows an example phase sequence, which
is consistent with Figure 2. The corresponding binary
variables are (1, 0, 0, 1). Phase 6 is the sync phase. Al-
though the newly defined cycle starts from the begin-
ning of phase 4 and 7 and ends after phase 2 and 5, the
traditional constant cycle length C is between the end of
sync phase and its next end, as shown in Figure 4.

3.3.1 Decision variables. As depicted in Figure 5, cycle
1 and cycle 2 are control cycles, during which the TSP
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algorithm manipulates the splits of green time for dif-
ferent movements. All the movement splits within the
control cycles are decision variables of the optimization
model. In contrast, the green splits in the background
cycle are not controlled by the TSP model. The green
split for movement i in cycle j is denoted as g;;, while
red time as 7 ;.

3.3.2 Constraints. The optimization model may satisty
six sets of constraints: (1) minimum green; (2) cycle
length; (3) barrier; (4) undersaturation; (5) red-green
relationship, and (6) real-time updates. All these con-
straints are elaborated as follows.

The minimum green constraint requires a minimum
protected green for each movement. Pedestrian cross-
ings are consolidated into this minimum constraint. We
introduce a variable to indicate pedestrian presence as
Equation (2). When the pedestrian button is pushed,
the minimum green for the corresponding movement
is elongated to the protected “walk” plus “flash don’t
walk” time, as described by Equation (3).

Pedj,-
i=1,...,8j=12)
1, ped’ button pushed for mov’ i in cycle j

0, no ped’ info for mov’ i in cycle j

(@)

gji> (1= Ped;;)) G+ Ped;; G™(i = 1,...,8;,j =1,2)
3)

where G™" is the minimum green for movement i and
Gfed is the protected “walk” plus “flash don’t walk”
time.

The cycle length constraint is formulated as Equation
(4). The first expression represents a lead-lead phase
sequence while the second one represents the lead-lag
or lag-lag sequence. Lead or lag operation suggests
whether the left-turn traffic is released before or after

4
Ly Ls (C - Zg/i) =LiLs (
i=1 i=5

the opposing traffic.
) - 0
(2— L1 — Ls)[C — Ls(gj-11 — g1)

—Li(gj-15—gjs) — (1 — Li)(1 — Ls)(gj-1.i — &)
—8ji — &ji+1 — 8ji+2 — &ii+3] =0 (i =1,5) (4)

(j=12)
8
C-> gi

where C is the signal cycle length.

The barrier constraint, as shown in Equation (5),
means that ring A and B at the same side of the barrier
should have the same duration:

8j1+8j2=28j5+8js

, 1,2
8j3+8ja=8j7t&8

®)

The undersaturation constraint, in the form of Equa-
tion (6), is to guarantee that no residual queue will be
present after the two control cycles.
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2
Ai Z (ki +rwi)

k=j
2
Hi Z 8ki
k=j

where ; is traffic arrival rate for movement i and wu; is
saturation flow for movement i.

Except for the predefined all-red period, a traf-
fic signal must show green to one movement while
showing red to the conflicting movements. Such red-
green relationships form another set of constraints
for the optimization model, as described in Equa-
tion (7).

<1, i=1,....8j=12 (6

8j-1i+1 + 8j-1,i+2 + &§j-1,i+3
— Li(gj-1i42 + &j-1.i+3

—8ji+2 — §ji+3) i=1,5j=1,2
8ji-1t &ji+1 + &ji+2 i=2,6,j=1,2
= 8ji—2t&j-1i-1+ &ji+
+Li 5(g0,i—2 — 81,i-2)
+Li(go,i+1 — 81.i+1) i=377j=1.2

8ji-3+8&j-1i-2+ &ji-1
+L;i3(80,i-3 — 81,i-3)
+(1— Li—1)(goi—1 — 81,i-1) i=4,8,j=1,2

To achieve the “adaptive” goal, another real-time up-
dating constraint is needed, as shown in Equation (8).
One major advantage of the adaptive TSP system is that
the central control module can update timing plans real
time based on real-time information, such as bus ar-
rival time. In addition, if the control module is aware of
the execution status of a particular movement, whether
skipped or ended, it will not consider the length of this
movement g as a decision variable any more. For
other statuses, either ongoing or forthcoming, g?;(p will
be another lower bound of the decision variable gj;
other than that in Equation (3).

gji = g5
M;ji(Mj;i —1)gji
< M;i(M;i — 1)g;;°

J

j=0,1,2%i=1,....8 (8)

where gj;" is the experienced green time for movement
i in control cycle j andMj; is the execution status for
movement i in control cycle j, defined as follows

0, movV is not started yet
M; 1,

_ movV’ is ongoing
i=1,...,8j=0,1,2) 2.

movV' is ended or
skipped

3.3.3 Objective function. The adaptive TSP operation is
to grant priority to buses while minimizing the impacts
on other vehicular traffic. To make a trade-off between
these two objectives, a weighting factor on bus delay is
used, which represents the preference between reducing
bus delay and reducing traffic delay. Therefore, the ob-
jective function of the proposed model is to minimize a
weighted sum of bus and other traffic delay. To compute
traffic delay, we have two scenarios for each movement
to consider:

1. Scenario I: no residual queue at the end of cycle 1
2. Scenario II: residual queues exist in cycle 1 but not
in cycle 2.

A classic deterministic queuing model is applied to
estimate delays at signalized intersections, assuming
uniform traffic arrivals and vertical queues at the inter-
section stop lines. It is known that the model may not
accurately represent the exact number of queued vehi-
cles at a given instant. However, the model does not
bias the delay estimation over an entire queue forma-
tion and dissipation process and works for both under-
and oversaturated traffic conditions (Dion et al., 2004).
It is noted that the focus of the model is not on delay
calculation model but the optimization and balance of
TSP benefits and negative impacts on other traffic. The
model can actually relax the assumption of uniform ar-
rival by two approaches. First, a scenario-based stochas-
tic model was developed (Yin, 2008) to address the fluc-
tuating traffic conditions. Second, the data driven model
(Li et al., 2009) was proposed to utilize the existing de-
tection system upon closed-loop actuated control sys-
tem.

According to the deterministic queuing model, traf-
fic delays in cycle 0, 1, and 2 are calculated by Equation
(9), which can be consolidated into Equation (10). It is
noted that the overall impact on traffic delay by the TSP
system should not be limited to the one intersection. On
account of the system coordination, the traffic along the
coordinated directions may experience additional delay
at adjacent intersections due to the timing changes at
one intersection. However, this part of delay is not cap-
tured by the current model.

Scenariol: d; = %pﬂ’é + %pi(ﬁzi +722i)
O]
. i i
Scenario I1: d; = E’piréi + Elpi(rli +72)? = i fLi g
8 i
dr = ; [?lpi(rli + rai)* — o min(gu;, pir1) + jpiré]

(10)

where: p; = R
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Regarding the bus intersection delay, if a transit ve-
hicle is expected to arrive before its normal green in
control cycle 1, the optimization model would make the
decision before control cycle 1 to reduce green times of
phases prior to the bus phase. Such a strategy is called
“early green.” “Green extension,” another popular TSP
strategy, will be executed instead if the transit vehicle
is expected to barely miss its original green. As green
extension may disrupt existing coordination for main
street phases, traffic engineers often impose some re-
strictions on this strategy. For example, the extended
green cannot be longer than 10% of the cycle length.

The bus that requests signal priority can arrive at any
phase in the proposed model. The most complicated
scenario is that the phase of bus arrival is the last phase
of a cycle because the green extension strategy under
this scenario would break the cycle length constraint
for two consecutive cycles. The case with bus arrival on
nonsync phase is easier to solve. In addition, most rapid
transit services that need TSP run along major corridors.
Therefore, we assume that buses are running on move-
ments 2 and 6 in the delay calculation. The model can be
readily adapted by changing the phase number in Equa-
tions (11)—(13) when a bus is actually not on movement
2 or 6. Here we introduce a binary variable as in Equa-
tion (11) to indicate buses’ running directions

1, if bus is on movement 2
B= . . (11)
0, otherwise bus is on movement 6

The predicted bus arrival time #;,; is referenced to the
end of a sync movement or a real clock (Zhou et al.,
2004). To compute bus delay, we convert fp,, into Ty,
which is referenced to the end of green of the bus phase

7;ms = tpus + B(l - Ll)g()l + (1 - B)(l - LS)gOS (12)

For early green, the model will shrink the red time
for the bus phase, from R’ to R, as shown in Figure 6. At
Tius, the bus is expected to arrive at the intersection to
join a standing queue. The number of queued vehicles
ahead of the bus is Ny, and the corresponding queue
discharging time is bus delay dj,,; because the bus leaves
the intersection at 7p,5 + dpys. The queue disappears at
t4, which can be computed as follows:

ty = R+ Bporio + (1 — B)psrie (13)

where R is the red time for the bus movement, R =
Bri, + (1 — B)}’16.
From the geometry of Figure 6, bus delay can be ob-
tained as follows:
% max(ty — Thus, 0)

R e (14)

Time

Fig. 6. Flow-time diagram for bus movement with TSP.

R
dpus = - max(ty — Thus, 0) (15)
q

Therefore, the objective function for early green
strategy is
8

mind = ; [%Pi(hi +r2)? = raiu min(gy;, pirii) + %Pir&]
R
+ wp max(ty; — Tpus, 0) (16)

q
where wj is the weighting factor for buses.

For green extension, the green of the bus phase in cy-
cle 0 is extended until the approaching bus leaves the
intersection. Therefore bus delay will be zero. So the
objective function for green extension is simply to mini-
mize Equation (10). Changes are also needed on the sig-
nal timing constraints for the green extension strategy.
As the bus arrived at the beginning of a cycle, the sync
phase in the cycle before the bus arrival is extended by
G,y:. As a result, the cycle length of the previous cycle
is elongated and that of the bus arrival cycle is shrunken
by as much as G,;.

In summary, the TSP optimization models are to min-
imize (16) or (10). Given specific setting of the signal
and real-time traffic information, all the constraints are
linear. By introducing additional auxiliary variables, the
objective function (16) or (10) can be easily transformed
into quadratic functions. Moreover, we treat all deci-
sion variables as continuous as signal controller works
at 10 hertz and their working frequency is 10 times
per second. Therefore, the formulated models are stan-
dard quadratic programming models, which can be eas-
ily solved by commercial solvers.

3.4 Computation procedure

Given a set of traffic signal information and tran-
sit movement data, an optimization solver for convex
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Table 1
General information and parameters for the example

Movement 1 2 3 4 5 6 7 8
Minimum green (sec) 4 6 4 6 4 6 4 6
Demand (veh/h) 200 1,200 200 800 200 1,200 200 800
Saturation flow (veh/h) 1,200 5,400 1,200 3,600 1,200 5,400 1,200 3,600
Green split (sec) 20 53 20 27 20 53 20 27
Delay (sec/veh) 50 23.8 50 46.7 50 23.8 50 46.7

Table 2

Performance of the adaptive TSP algorithm (medium-congested scenario)

Average vehicle delay (sec/veh)

Traffic at bus Traffic at other Total vehicle
Bus movement movements delay
Weighting factor (sec) Diff’ (sec) Diff’ (sec) Diff’ (sec) Diff’
1 (Ref’) 10.24 0.00% 19.05 0.00% 37.46 0.00% 15,782.41 0.00%
50 4.98 —51.34% 19.27 1.13% 37.65 0.52% 15,877.40 0.60%
100 3.12 —69.54% 19.37 1.67% 38.02 1.50% 16,018.45 1.50%
150 1.1 —89.24% 19.48 2.24% 38.68 3.25% 16,263.63 3.05%
200 0.2 —98.04% 19.60 2.88% 39.07 4.29% 16,416.62 4.02%
250 0.14 —98.61% 19.64 3.06% 39.09 4.35% 16,428.58 4.09%
300 0.02 —99.85% 19.66 3.19% 39.18 4.60% 16,464.55 4.32%
350 0.00 —100% 19.70 3.38% 39.18 4.60% 16,469.16 4.35%
400 0.00 —100% 19.70 3.38% 39.18 4.60% 16,469.16 4.35%

quadratic objective with linear constraints, may output
two sets of phase splits for early green and green exten-
sion strategy, respectively. By comparing the values of
the two objective functions, the optimal strategy is de-
termined for the coming bus. The final priority request,
which is the output to PRS, consists of the phase splits in
the form of force-off or green splits together with other
information consistent with the NTCIP 1211 specifica-
tion.

3.5 Numerical case study

We present a numerical example here to demonstrate
the proposed models. We also conducted the sensitivity
analysis on weighting factor in the objective. Although
the selection of weighting factor can be political, pol-
icy and circumstance dependent, the results presented
in the sensitivity analysis can provide some guidance to
decision makers on the benefits and cost comparison re-
sulted from different weighting factors.

In this example, the intersection has four lanes on
each main street approach, one of which is the left-turn
lane. On the cross streets, there are one left-turn lane
and two through lanes. Table 1 reports basic settings for
the example under a medium-congested scenario whose
saturation degree is 0.67. For a simplification of the cal-

culation, traffic arrivals were assumed to be uniformly
distributed in the numerical case study. The phase se-
quence is shown in Figure 4 and the cycle length is 120
seconds. Suppose that a bus is coming along movement
6 and pedestrian buttons will not be pushed in the ex-
ample.

Assuming that bus can arrive at any second of the lo-
cal clock, we used the optimization toolbox provided
in MATLAB to solve the optimization models. The
constraint nonlinear programming problem is solved by
computing a quasi-Newton approximation to the Hes-
sian, the second derivatives of the Lagrangian. The
interior-point algorithm is applied to the solver. The
interior-point algorithm is applied to the solver.

Table 2 presents the performance of the TSP algo-
rithm under the medium-congested scenario. Both the
average and total vehicle delays are computed by con-
sidering cycle 0, 1, and 2 and averaging across different
bus arrival times. When the weighting factor is 1, the
bus is treated as important as any other vehicle. There-
fore, the objective of this case is to minimize total ve-
hicle delay, including bus delay, which is essentially the
adaptive signal control logic. As the weighting factor in-
creases, the approaching bus has relatively higher pri-
ority over the other traffic. Accordingly, bus delay will
be reduced at the cost of the other traffic. For active
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Table 3
Performance of the adaptive TSP algorithm (heavily congested scenario)

Average vehicle delay (sec/veh)

Traffic at bus Traffic at other Total vehicle
Bus movement movements delay

Weighting factor (sec) Diff’ (sec) Diff’ (sec) Diff’ (sec) Diff’

1 (Ref’) 25.09 0.00% 28.60 0.00% 42.44 0.00% 22,475.62 0.00%
100 10.95 —56.38% 29.50 3.15% 43.80 3.20% 23,190.88 3.18%
200 5.45 —78.29% 30.47 6.53% 4522 6.55% 23,932.43 6.48%
300 1.69 —93.27% 31.49 10.10% 46.98 10.71% 24,834.72 10.50%
400 0.96 —96.19% 31.82 11.26% 47.50 11.92% 25,102.70 11.69%
500 0.31 —98.75% 31.97 11.78% 48.19 13.55% 25,421.80 13.11%
600 0.27 —98.92% 31.96 11.75% 48.24 13.68% 25,444.25 13.21%

rule-based TSP systems, the priority treatment also fa-
vors the traffic moving along the bus traveling direction
(Zhou et al., 2004). However, it is not necessarily true
with adaptive TSP, because the model optimally allo-
cates the disturbance of bus priority treatment to all
other traffic. The longer bus phase in cycle 1 may in-
cur a shortened green for the same phase in cycle 2, be-
cause other movements need to be compensated in the
transition cycle. Consequently, it can be seen in Table 2
that average vehicle delays at the bus and other direc-
tions rise up to by 3.38% and 4.6%, respectively as the
weighting factor increases.

On the other hand, bus delays are more sensitive to
changes in the weighting factor than other traffic de-
lays. When the weighting factor is 50, the average bus
delay under different predicted arrival times is reduced
by 51.34% while delays to traffic at the bus and non-
bus movement only increases by 1.13% and 0.52%, re-
spectively. When the weighting factor increases to 350,
buses experience no delay no matter when they arrive at
the signal, while average vehicle delay for other traffic
rises 0.65 seconds and 1.72 seconds only. We conclude
that the proposed adaptive TSP model works well in
the medium-congested scenario because it can signifi-
cantly reduce bus intersection delay without incurring
much extra delay for the other traffic.

Rakha (2004) recommends active TSP for medium-
or low-congested conditions, because such systems al-
ways incur significant delay to nonbus movements in
highly congested scenarios. The proposed adaptive TSP
system, however, can use the weighting factor to make
an explicit trade-off in heavily congested traffic. Table 3
presents the performance of the adaptive TSP algorithm
in a scenario with a saturation degree of 0.89. Simi-
lar to the results in Table 2, the average bus delay de-
creases dramatically as the weighting factor increases,
while the average delay for other traffic shows a much

slower trend of increase. However, the delays experi-
enced by other traffic are more significant than those
in medium-congested conditions, because time resource
available to conflicting traffic is scarcer when it is highly
congested.

Figures 7 and 8 show average bus and other traffic de-
lays versus weighting factor and bus arrival time at the
local clock for the heavily congested scenario. If the bus
arrives at the beginning of the signal cycle when the bus
phase is red, the bus experiences more delay. Note that
neither surface is smooth due to the fact that the opti-
mized values are not differentiable with bus arrival time.
The surfaces break when the system decides to switch its
strategy from green extension to early green.

According to the trends of the surfaces, we can see
bus delays decrease as the weighting factor grows and
the arrival time increases, while other traffic delays rise
as the weighting factor grows. When bus arrival time
falls at either end of a cycle, the TSP algorithm can eas-
ily extend green or do nothing to manipulate TSP re-
quests. When bus arrival time falls in the middle of a
cycle, the TSP algorithm has to provide priority, which
would incur greater delay for other traffic. Therefore,
other traffic delays peak when arrival time is in the mid-
dle of a cycle. Moreover, the peak value increases with
the increase of the weighting factor.

4 FIELD OPERATIONAL TEST

The developed adaptive TSP system has been tested
in a field environment. The testing site is a stretch
of El Camion Real corridor that is a major connec-
tor between San Francisco and Silicon Valley, Cali-
fornia. The testing site is 2 miles long and consists of
seven signalized intersections: from 9th Avenue to 28th
Avenue. All the traffic signals are under coordinated
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Fig. 8. Intersection delays for other traffic in the heavily congested scenario.

semiactuated control and are installed with 170E sig-
nal controller together with California Department of
Transportation (Caltrans) C-8 firmware. A quadratic
programming solver COPL_QP was selected to solve
the problem with convex quadratic objective and lin-

ear constraints. The solver used an interior-point al-
gorithm and outputted movement splits, which were
then covered into force-off points. The TSP requests
were sent to 170E controllers running C-8 firmware. The
system operational latency, including data collection,



Modeling and implementation of adaptive TSP 281

data processing, optimization, and request transmission,
was within 5 seconds, which is adequate for real-time
operation.

A not-in-service bus from San Mateo County Tran-
sit District (SamTrans) was equipped with the GPS and
wireless communication-based data acquisition system
for the field test. During the 2-week-long testing period,
the assigned bus driver drove the testing bus back and
forth along the testing site within three designed time
windows: morning peak, mid-day, and afternoon peak.
The bus arrival time at intersection was predicted us-
ing the recursive least-squares method based on both
historical data and real-time bus movement data. The
prediction error was within 5 seconds when buses were
within the range of 300 meters (984 feet). A traffic flow
prediction model, based on an adaptive RLS method
and real-time loop detector data, has been developed
to provide an estimation of traffic arrival flow for every
5 minutes.

Traffic delay was calculated based on the field data
from loop detectors. As shown in Figure 1, traffic signal
data such as running phase and local cycle timer with
high frequency (0.5 to 1 HZ) together with traffic vol-
ume data from each loop detector were collected. For
most of the coordinated actuated systems particularly in
California, there is frame-relay communication in place
for coordination. Meanwhile, all controllers are com-
pliant with NTCIP standard or AB3418 in California.
Such communication system and protocol are capable
of transmitting data frequently to the field master. For
actuated control system, advance loops, and four 6'x6’
presence loops, if any, are placed. Arrival and departure
traffic counts and occupancies can be made available.
In addition, second-by-second signal status information
can be archived and retrieved for all phases. The traffic
delays shown below were calculated based on the signal
arrival and departure curves given the historical right-
turn turning ratio. When the presence loops were not
placed, a uniform departure curve was built once the
signal phase changed its color. For the oversaturation
case when the advanced loop is always occupied by the
waiting queue, a uniform arrival curve was built for the
delay calculation.

Table 4 compares intersection delays for the “before”
and “after” scenarios. It is noted that the “before” sce-
nario here is not real “before” scenario due to the limit
samples for each time of day period. Instead, an emula-
tion program was developed to mimic the original semi-
actuated signal control logic under Caltrans C-8 con-
trol firmware. The emulation program generated green
splits based on the loop detector data and pedestrian
button information we collected from the field and cre-
ated the “before” case without the TSP request for each
of the “after” sample cases. Such a derived “before” sce-

nario is more comparable with the “after” scenario with
TSP.

With those derived “before” scenarios, it is shown in
Table 4 that traffic delays for both major phases and mi-
nor phases were slightly increased after executing TSP.
When calculating the average passenger delay at inter-
sections, the average number of passengers on regular
vehicles is assumed to be 1.2 persons. For SamTrans
buses, the average number of passengers onboard is as-
sumed to be 15 persons per bus. For example, at 9th Av-
enue, TSP reduced the average bus delay significantly
by 95% to 1.98 seconds per bus; the average major-
phase traffic delay was reduced by 81% to 2.70 seconds
per vehicle; the minor-phase delay increased by 6%
to 15.35 seconds per vehicle. The statistic ¢-test results
show that the delay reductions for buses and major-
phase traffic are significant, while the incurred-delay for
minor-phase traffic is negligible. Overall, the average
passenger delay for all approaches including buses was
reduced by 55%, which is also statistically significant.

Two busiest intersections along the testing corridor
are 17th and 25th Avenue. In the field test, a constant
weighting factor was applied for all seven intersections.
As the weighting factor is the key to balance the level of
priority and incurred additional delay to other phases,
at those busy intersections the TSP optimization models
may reduce the level of priority given to buses. At 17th
Avenue, average bus and major-phase delay was re-
duced by 53% and 14 %, respectively. Meanwhile, TSP
caused additional minor-phase traffic delay of 1.49 sec-
onds per vehicle. The average passenger delay at 17th
Avenue was reduced by 14%, which is statistically sig-
nificant. Similarly, at 25th Avenue, TSP saved 43% of
bus delay and 16% of major-phase traffic delay with
costing extra 1.39 seconds per vehicle for minor-phase
traffic. The average passenger delay saving is 12%,
which is also statistically significant.

One of the primary incentives for TSP is that transit
vehicles carry more passengers than other vehicles, so
that giving priority to transit vehicles may reduce over-
all passenger delay. Table 5 presents results of a sen-
sitivity analysis to see how the number of passengers
on buses affects overall passenger delay at intersections.
Intuitively, more passengers on buses will lead to more
significant reduction of overall passenger intersection
delay. According to Table 5, Barneson Avenue has
higher sensitivity than other intersections due to its rel-
atively smaller traffic volumes. TSP would reduce the
average passenger intersection delay if there are more
than six passengers onboard. For the other six inter-
sections, TSP operations would always reduce average
passenger delay, largely due to the fact that existing
semiactuated signal control is less optimal and adaptive
optimization of signal timing is always beneficial.
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Table 4
Adaptive TSP impacts on intersection delays (sec/veh or sec/passenger)

Derived “before” scenario

Delay (sec/veh

“After” scenario

or sec/pax) Bus Major Minor Pax* Bus Major Minor Pax*
9th Ave. Mean 41.58 14.16 14.42 15.57 1.98 2.70 15.35 6.98
Standard 19.15 8.50 6.36 5.36 6.86 1.36 4.83 1.88
deviation
Chg
sec/veh N/A N/A N/A N/A —39.60 —11.46 0.93 —8.59
% N/A N/A N/A N/A —95% —81% 6% —55%
t-test N/A N/A N/A N/A sig’t sig’t insig’t sig’t
17th Ave. Mean 61.38 33.20 9.61 25.93 28.56 28.48 11.11 22.19
Standard 19.49 10.71 3.09 7.34 29.64 12.29 3.33 7.60
deviation
Chg
sec/veh N/A N/A N/A N/A —32.82 —4.72 1.49 —3.74
% N/A N/A N/A N/A —53% —14% 16% —14%
t-test N/A N/A N/A N/A sig’'t insig’t sig’t sig’t
25th Ave. Mean 51.30 36.67 13.72 27.42 29.09 30.88 15.11 24.19
Standard 27.65 10.39 2.76 6.54 28.34 8.07 2.37 5.40
deviation
Chg
sec/veh N/A N/A N/A N/A —-22.21 -5.79 1.39 -3.23
% N/A N/A N/A N/A —43% —-16% 10% —12%
t-test N/A N/A N/A N/A sig’t sig’t sig’t sig’t
27th Ave. Mean 45.35 18.26 16.94 19.13 17.93 11.63 17.15 12.36
Standard 17.49 8.58 7.00 7.52 21.74 5.29 331 4.30
deviation
Chg
sec/veh N/A N/A N/A N/A —27.42 —6.62 0.21 —6.76
% N/A N/A N/A N/A —60% —-36% 1% —35%
t-test N/A N/A N/A N/A sig’t sig’t insig’t sig’t
28th Ave. Mean 45.58 18.83 13.24 18.76 14.07 4.95 16.77 7.20
Standard 15.06 5.94 2.50 4.40 18.81 2.54 423 2.73
deviation
Chg
sec/veh N/A N/A N/A N/A —31.50 —13.89 3.53 —11.56
% N/A N/A N/A N/A —69% —74% 27% —62%
t-test N/A N/A N/A N/A sig’t sig’t insig’t sig’t

Notes: Pax*: Delay for passengers on buses and other vehicles; Chg: Change comparing “before” and “after” scenario; t-test: t-test to check the
delay change is statistically significant or insignificant; sig’t: Delay change is statistically significant; insig’t: Delay change is statistically insignificant.

5 CONCLUSIONS AND FUTURE WORK

The findings of the study may provide the transporta-
tion authorities with a cost-efficient way to achieve
adaptive TSP in the state-of-the-practice traffic con-
trol systems. It provides quantitative models to explic-
itly balance the benefits and impacts of TSP. Given a
specific traffic situation, a cost-benefit analysis could
be conducted to determine a weighting factor for the
optimization models. Such weighting factor would

be able to provide appropriate priority to the tran-
sit vehicles, meanwhile with limited negative im-
pacts on other general traffic. A field operational
test was conducted upon a 2-mile-long arterial that
consists of seven signalized intersections. The results
are very promising: the average reductions on the
bus delay and traffic delay along the major phases
are 64% and 44%, respectively. The negative im-
pact on increasing average traffic delay for minor
phases is 12%. Overall, the average passenger delay
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Table 5
Sensitivity analysis of passenger intersection delay (sec/pax)
Scenario Number of pax 9th Ave. 12th Ave. Barneson 17th Ave. 25th Ave. 27th Ave. 28th Ave.
Before 1 14.35 6.49 16.40 24.37 26.78 18.20 17.94
5 14.71 6.72 16.62 24.83 26.96 18.47 18.18
10 15.14 7.00 16.89 25.39 27.19 18.80 18.47
15 15.57 7.27 17.15 25.93 27.42 19.13 18.76
20 15.98 7.52 17.41 26.46 27.64 19.44 19.04
After 1 7.21 5.44 16.86 21.99 24.06 12.17 6.99
5 7.14 5.35 16.70 21.99 24.10 12.22 7.05
10 7.06 5.25 16.51 22.09 24.14 12.29 7.12
15 6.98 5.15 16.32 22.19 24.19 12.36 7.20
20 6.90 5.05 16.14 22.29 24.24 12.43 7.27
Change —49.69% —16.18% 2.80% —-9.77% -10.16% —-33.19% —61.04% —49.69%
—-51.39% —20.39% 0.48% —11.44% —10.65% —33.84% —61.22% —-51.39%
—53.43% —25.00% —2.25% —13.00% —-11.22% —34.63% —61.45% —53.43%
—55.17% —29.16% —4.84% —14.42% —-11.78% —35.34% —61.62% —55.17%
—56.82% —32.85% —7.29% —15.76% —12.34% —36.06% —61.82% —56.82%
considering both transit vehicles and general traffic is REFERENCES

reduced by 36%.

In future studies, the weighting factor could be a func-
tion of factors such as maximum allowed traffic de-
lay, longest queues, number of transition cycles, transit
headways, or schedule lateness. In other words, the TSP
algorithm can work with these factors instead of am-
biguous weighting factors. Moreover, the assumption of
deterministic traffic arrival pattern in traffic delay cal-
culation can be relaxed using scenario-based stochastic
modeling approach (Yin, 2008) or using the data-driven
model (Li et al., 2009) based on the detections system
upon closed-loop actuated control system. Finally, the
sensitivity analysis on how the accuracy of the model in-
puts, for example, bus arrival time and short-term traffic
flow, and the communication latency would impact on
the final system performance will be conducted.
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