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Abstract

Bike sharing systems consist of a fleet of bikes placed in a
network of docking stations. These bikes can then be rented
and returned to any of the docking stations after usage. Pre-
dicting unrealized bike demand at locations currently without
bike stations is important for effectively designing and ex-
panding bike sharing systems. We predict pairwise bike de-
mand for New York City’s Citi Bike system. Since the system
is driven by daily commuters we focus only on the morning
rush hours between 7:00 AM to 11:00 AM during weekdays.
We use taxi usage, weather and spatial variables as covari-
ates to predict bike demand, and further analyze the influence
of precipitation and day of week. We show that aggregating
stations in neighborhoods can substantially improve predic-
tions. The presented model can assist planners by predicting
bike demand at a macroscopic level, between pairs of neigh-
borhoods.

Introduction
Bike-sharing systems are in place in several cities in the
world, and are an increasingly important support for multi-
modal transport systems (Shaheen, Guzman, and Zhang
2010). The objective of our research is to develop an ac-
curate prediction model that estimates demand for bike trips
between pairs of locations. Our model can be used to make
predictions even when one or both of these locations do not
currently have bike stations in place, and can be used as a
planning tool when deciding how to expand a city’s bike
sharing system. By providing pairwise predictions of the de-
mand for trips between each origin-destination pair, we pro-
vide not just an estimate of how much incoming and out-
going demand will be realized if a new bike station were
built, but also where the incoming/outgoing demand will
originate/terminate, predicting this new station’s effect on
the existing network.

We predict bike demands by running regression models
with covariates that include population, weather and taxi us-
age. Since bike usage is affected by temporal and weather
characteristics (Imani et al. 2014), we focus only on the
morning rush hours of 7:00 AM-11:00 AM and test our
model in two different scenarios: dry weekdays and rainy
weekdays. We show that, although accurately predicting
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flows at the station pair level is difficult, a simple aggre-
gation at the neighborhood level can substantially improve
flow predictions. Neighborhood definitions (geographical
boundaries) are obtained from an external source and are
based on demographic and economic variables. Pairwise
neighborhood predictions can then assist decision-makers in
deciding in which neighborhoods to expand their network.
We validate our prediction model by predicting demands for
the existing network of New York City’s Citi Bike system.

Over the past few years, several studies have analyzed fac-
tors affecting bike flow and usage. (Rixey 2013) analyzes
the impact of demographics and built environment charac-
teristics on bike usage and concludes that population den-
sity critically affects bike usage. (Buck and Buehler 2012)
explores the influence of population, bicycle lanes and retail
destinations on bike usage in Washington DC.(Imani et al.
2014) analyzes the BIXI system in Montreal using meteoro-
logical data, temporal characteristics and built environment
attributes. (Etinne and Latifa 2012) uses model based clus-
tering to explore the usage of bike sharing systems. (Shu et
al. 2010) uses train ridership data as demand estimates and
develops a network flow model to analyze bike sharing sys-
tems. While these other studies have analyzed the effects of
various factors on bike demands, no studies to our knowl-
edge have used taxi data to predict bike trip volume. We use
taxi usage as a co-variate in bike usage predictions, finding it
particularly useful for predicting pairwise demand, and pro-
pose a neighborhood approach in analyzing flows between
stations.

Data
We obtained bike usage statistics for April, May, June and
July 2014 from Citi Bike’s website1. This dataset contains
start station id, end station id, station latitude, station longi-
tude and trip time for each bike trip. 332 bike stations have
one or more originating bike trips. 253 of these are in Man-
hattan while 79 are in Brooklyn (left panel of Figure 1). We
processed this raw data to get the number of bike trips be-
tween each station pair during morning rush hours.
We obtained publicly available taxi usage data from New
York City’s Taxi and Limousine Commission (TLC) for

1https://www.citibikenyc.com/system-data



Figure 1: Bike Station Locations in Manhattan and Brooklyn
(left), and corresponding Voronoi regions (right). Taxi trip
origins and destinations were assigned to bike stations when
making predictions according to these Voronoi regions.

Figure 2: Neighborhood Boundaries in Manhattan and
Brooklyn. We aggregate bike stations within neighborhoods
to improve predictive performance.

April, May, June and July 20132. Each record in the
data set contains pickup date and time, drop-off date and
time, passenger count, trip time, trip distance, pickup lati-
tude/longitude and drop-off latitude/longitude for a taxi trip.
We processed this raw data to obtain all trips during morn-
ing rush hours.
To every processed taxi trip, we then assign a pickup and
drop-off bike station ID using the taxi trip’s pickup and drop-
off locations. To do this, we create a Voronoi diagram with
bike station locations as Voronoi centers (right panel of Fig-
ure 1) and find, for each taxi trip, the Voronoi regions in
which the taxi pickup and drop-off occurred. We assign the
trip’s origin and destination to the corresponding bike sta-
tions. To avoid bias favoring stations with large Voronoi ar-
eas, and more accurately predict bike trips, we include only
those taxi trips for which both pickup and drop-off location
are within a quarter mile of a bike station. The retained trips
are then grouped by pickup and drop-off bike station id to
get a count of taxi trips for each station pair.

2http://www.andresmh.com/nyctaxitrips

We obtained New York City’s daily precipitation data for the
months of April, May, June and July in 2013 and 2014 from
the National Climatic Data Center3. The average number of
daily bike trips on weekdays with rain less than 1 mm (dry
days) is 26% more than on weekdays with rain greater than
1mm (rainy days), and so we focus on dry days in our anal-
ysis.
We obtained population and housing data from the 2010 US
Census4. Each record in this data set contains geographical
ID, display label and population count for a census block
group (a small geographic area). Each bike station is as-
signed the population and housing units in the census block
group to which it belongs.
We use neighborhood boundaries defined with economic
and demographic variables to classify different neighbor-
hoods in Manhattan and Brooklyn5. There are 38 neigh-
borhoods in Manhattan and 18 in Brooklyn (Figure 2). Out
of these, 27 neighborhoods in Manhattan and 12 neighbor-
hoods in Brooklyn have existing bike stations. Each of the
existing bike stations is assigned to a neighborhood based on
its geographic location. Neighborhood population and hous-
ing units are calculated by aggregating values for bike sta-
tions that lie in different census block groups within that
neighborhood. This ensures that we do not double-count
population in neighborhoods with multiple stations in the
same block group.

Regression Models
We use regression analysis to predict bike trips during morn-
ing rush hours for station and neighborhood pairs. We use
log-log regression models and test the model in different
scenarios based on weather and temporal characteristics. To
satisfy normality assumptions made by linear regression, we
use base-10 log transformations of bike trips, taxi trips, pop-
ulation and housing units. We add 1 to both bike and taxi
trips before the transformation to avoid infinite values for
station pairs with 0 bike or taxi trips.

Analysis at the Station Level
A scatter plot of log-transformed bike and taxi trips be-
tween station pairs (Figure 3) suggests that although there
is some positive correlation between the two, there is also
a great deal of unexplained variation. We fit a linear regres-
sion model using log-transformations of taxi trips, popula-
tion, and housing units along with Euclidean and Manhat-
tan distance between station pairs as covariates. Manhattan
distance (in miles) is calculated by taking the absolute dif-
ference of latitudes and longitude for pickup and drop-off
stations and multiplying by 69.1. To exploit the difference
in usage patterns between Manhattan and Brooklyn, we also
introduce pairwise indicator variables. IM,B is an indicator
for bike trips that start in Manhattan and end in Brooklyn.
We define IM,M , IB,M and IB,B similarly. We used step-
wise backward selection to select significant independent
variables. We trained the model on dry weekdays in April

3http://www.ncdc.noaa.gov/cdo-web/
4http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml
5http://nyc.pediacities.com/New York City Neighborhoods



Figure 3: Taxi vs. bike usage for individual stations. Each
point corresponds to a pair of bike stations. The x-axis shows
taxi trips between Voronoi regions centered at those bike sta-
tions. The y-axis shows bike trips between those stations.
Although there is some correlation, the correlation is much
stronger at the neighborhood level (see Figure 5).

2014 and tested on dry weekdays in May 2014.
The regression at the station pair level does not yield the
desired level of accuracy in predictions for the test set, as
the model consistently underpredicts log(1+bike trips) rela-
tive to actual values, and a substantial amount of variation
remains unpredicted (Figure 4). Moreover, the adjusted R-
squared value for the model on the training set is 24% which
implies that the model captures only 24% of the variabil-
ity in the training set. Below, to improve our predictions we
run the regression models after aggregating stations based
on neighborhood definitions.

Figure 4: Actual vs predicted bike demand, for demand be-
tween station pairs. The red line shows actual=predicted.
Compare to Figure 6, which shows substantially better pre-
dictive performance for demand between neighborhoods.

Analysis at the Neighborhood Level
A scatter plot of log-transformed bike and taxi trips between
neighborhood pairs shows that there is a substantial posi-
tive correlation between taxi and bike trips during morning
rush hours (Figure 5). We fit a regression model to predict
pairwise bike demand between neighborhoods using log-
transformations of taxi trips, population at pickup and drop-
off stations and indicator variables as described in the previ-
ous section. The covariates are selected using stepwise back-
ward selection and we include only those covariates that are
significant. The adjusted R squared value of the new model
with dry weekdays from April as the training set increases

Figure 5: Taxi vs. bike usage for neighborhoods. Each point
corresponds to a pair of neighborhoods. The x and y-axis
show taxi and bike trips respectively between that pair of
neighborhoods.

Figure 6: Actual vs predicted bike demand, for demand be-
tween neighborhoods. The red line shows actual=predicted.
This plot shows substantially better predictive performance
than when predicting demand at the station level.

to 74% on the training set. While this is a significant im-
provement from the individual station model, it is important
to note that the two values cannot be compared directly since
the two models are predicting trips at different aggregation
levels(Robinson 1950). Nevertheless, accurate predictions at
the neighborhood level is important because it can provide
important and interpretable insights to planners about flows
of bikes between neighborhoods.
Table 1 shows the estimated coefficients of each covari-
ate in our model. A positive coefficient value implies that
log(1+bike trips) increases with this covariate. We choose
IB,M as the base for our indicator variables, setting its ef-
fect to 0 without loss of generality. Thus, a negative co-
efficient value for IM,M signifies that, for each neighbor-
hood pair with origin and destination in Manhattan, there
are fewer log(1+bike trips) on average than pairs with an
origin in Brooklyn and destination in Manhattan. The actual
vs predicted values for May 2014 (Figure 6) suggest that the
predictions are accurate. We do a similar analysis for rainy
weekdays and observe that the predictive power of the mod-
els as measured by adjusted R squared is 68.5%.

Model Validation Linear regression (in our case, applied
to log-transformed outcome variables and covariates) as-
sumes that residuals are normally distributed. We test this
assumption by creating a quantile-quantile (QQ) plot (Fig-
ure 7) on the residuals. The straight line in the QQ plot val-



Dependent variable: log bike
est. coefficient stderr

log taxi 0.378∗∗∗ (0.040)
log(pick population) 0.206∗∗∗ (0.021)
log(drop population) 0.092∗∗∗ (0.019)
IM,B −0.478∗∗∗ (0.079)
IB,B 0.330∗∗∗ (0.078)
IM,M −0.850∗∗∗ (0.077)
log taxi:IM,B −0.021 (0.063)
log taxi:IB,B 0.155∗∗ (0.071)
log taxi:IM,M 0.379∗∗∗ (0.044)
Constant −0.700∗∗∗ (0.122)
Observations 1,277
R2 0.746
Adjusted R2 0.745
Residual Std. Error 0.419 (df = 1267)
F Statistic 413.704∗∗∗ (df = 9; 1267)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: Regression Output. The first section shows, for each
independent variable, its estimated effect on the dependent
variable log bike=log10(bike trips + 1), the statistical signif-
icance of this effect, and the standard error associated with
this estimate. The second section shows summary statistics
on the training set. This table was created using the R pack-
age (Hlavac 2014).

idates the normality assumption. To check the model pre-
dictions, we use a test-train framework. We run 3 iterations
of the model on dry weekdays with different training and
test sets and report the Root Mean Squared Error (RMSE)
and standard deviation of the errors in each case (Table 2).
We observe that the RMSE on the log-transformed data is
approximately 0.42, which corresponds to predictions that
are larger or smaller than the actual value by a factor of
100.42 ≈ 2.6. While these errors are perhaps too large for
many operational uses, observed demand values span 5 or-
ders of magnitude (from 100 up to 104, as seen in Figure 6),
making a prediction with this level of accuracy quite useful
for strategic decisions about network expansion. When cal-
culated on an absolute scale, rather than a logarithmic scale,
the average RMSE across the three runs was 163.

Figure 7: Q-Q plot of the residuals from fit of demand be-
tween neighborhood pairs. This plot validates linear regres-
sion’s assumption of normal residuals.

Training Set Test Set RMSE St.Dev.of Errors
April May 0.431 0.412
May June 0.429 0.416
June July 0.410 0.408

Table 2: Prediction performance on test sets, using three dif-
ferent training sets.

Conclusion and Future Work
This study predicts the bike usage pattern of New York
City’s Citi Bike system during morning rush hours of 7:00
AM-11:00 AM. We use taxi usage in addition to temporal,
demographic and weather factors as covariates in predicting
pairwise trips. We observe that analyzing pairwise trips at
the neighborhood level instead of looking at individual sta-
tions in bike sharing systems can substantially improve the
predictions.

In the future, we will analyze the effects of other weather
and demographic covariates on bike usage patterns. A com-
parative study of a similar analysis for evening rush hours
will provide important insights about temporal effects on
bike usage patterns. We will use these pairwise demand es-
timates to predict the required number of bikes and racks at
different stations that would maximize the total number of
bike trips.
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