Global Designing Cities Initiative,
NACTO Designing Cities Conference, Austin, October 2015

Global Street Design Guide // Preview

Skye Duncan
skye@nacto.org
@GlobalStreets
Bloomberg Philanthropies

September 2014 announced:
2015-2019
$125 Million to Global Road Safety
1.25 million traffic fatalities annually
## Global Leading Causes of Death

<table>
<thead>
<tr>
<th>Today Rank</th>
<th>Disease/Injury</th>
<th>2030 Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heart Disease</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Stroke</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Respiratory Infection</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Pulmonary Disease</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Diarrhoeal Disease</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>HIV/AIDS</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Throat/Lung Cancer</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Diabetes</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Traffic Injuries</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Hypertension</td>
<td>10</td>
</tr>
</tbody>
</table>

| Source: WHO Global Road Safety Report |
London, United Kingdom
Buenos Aires, Argentina
Urban Street Design Guide

National Association of City Transportation Officials

Urban Bikeway Design Guide
Second Edition
National Association of City Transportation Officials
Global Street Design Guide

Global Designing Cities Initiative
Transport for London

Improving walkability

Good practice guidance on improving pedestrian conditions as part of development opportunities

September 2005
Inspire Leaders
Inform Engineers, Planners and Designers
Empower Communities
Global Expert Network

70 cities from 40 counties
What Is Possible

Existing: 50km/h

Reconstruction: 40km/h

Invite Street Activity
Change Street Geometry
Create Cycle Facilities
Add Seating
Add or Improve Pedestrian Crossings
Add Energy-Efficient Lighting
Improve Signals
Enhance Enforcement
Organize Transit
Integrate Public Artwork
Connect Walking Networks
Upgrade Materials
Reduce Speed Limits
Add Green Infrastructure
Provide Street Furniture
Include Wayfinding
Activate Ground Floors
Provide Climate Protection
A New Approach to Street Design

**Users**

- Examine how the context of a street defines the physical scale and character of the space. Look at how the surrounding land uses, densities, and larger network influence mobility patterns and how the street is used.

**Context**

- Identify people who use a street today and quantify when and how they use it. Determine the desired breakdown of users for future street conditions and ensure that a design meets the needs of everyone.

**Street Design**

**Desired Outcomes**

- Health and Safety
- Livability and Quality of Life
- Multi-modal Access
- Environmental Sustainability
- Economic Benefits
- Equity

Streets can be catalysts for urban transformation. The Global Street Design Guide presents techniques and strategies being pioneered by the world’s foremost urban engineers and designers. Based on the principle that streets are public spaces for people as well as corridors for movement, this Guide marks a shift away from a functional classification of streets categorized only according to their ability to move traffic. Instead, it embraces an approach based on local context, the needs of multiple users, and larger social, economic, and environmental goals. The following pages illustrate three different streets that vary in size, function, and context. Based on real streets and conditions common in cities around the world, each category demonstrates possible transformations of existing streets into great urban places.
USERS
Streets Users
Streets Users - Pedestrians
Streets Users - Cyclists
Streets Users – Collective Transport
Streets Users – Personal Motor Vehicles
Streets Users – Moving Goods & City Services
Streets Users - Business
Streets Users – User Comparison

Relative Scale

<table>
<thead>
<tr>
<th>User</th>
<th>1 m²</th>
<th>2 m²</th>
<th>24 m²</th>
<th>36 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian</td>
<td>0.8m</td>
<td>1.2m</td>
<td>2.5m</td>
<td>3.6m</td>
</tr>
<tr>
<td>Cyclist</td>
<td>0.6m</td>
<td>1.2m</td>
<td>2.5m</td>
<td>3.6m</td>
</tr>
<tr>
<td>Bus</td>
<td>2.5m</td>
<td>2.5m</td>
<td>8m</td>
<td>12m</td>
</tr>
<tr>
<td>Truck</td>
<td>2.5m</td>
<td>3.5m</td>
<td>8m</td>
<td>5m</td>
</tr>
<tr>
<td>Car</td>
<td>1.8m</td>
<td>2.8m</td>
<td>5m</td>
<td>2.9m</td>
</tr>
</tbody>
</table>

Average Distances / 10 mins

- 0.8 km
- 2.4 km
- 3.3 km
- 4.2 km
Streets Users – User Comparison

Space to move
50 people

50 m²

50 m²

36 m²

400 m²
How many people can fit in the same area?

Streets Users – User Comparison

- 75 people
- 22 people
- 4-25 people
- 18 people
- 32 people
- 0 people

3 m

25.0 m

75
22
2
4.5
4
8
4.5
Pedestrians
Speed, Variations and Dimensions

0.8m
1.2-1.5m
1.8m
0.5m
0.7m
0.7m
1m

0 km/h
4 km/h
10 km/h
15+ km/h
Pedestrians

Key Network Considerations

- Connectivity
- Safety
- Permeability
- Choice
- Human Scale and Complexity
- Key Destinations
- Variety of Users
- Volume of Users
- Green Corridors
- Character and Identity
Pedestrians

Geometry

Residential Sidewalk
Residential Ribbon Sidewalks
Residential Sidewalk with Trees
Neighborhood Main Street 1
Neighborhood Main Street 2
Medium Commercial Sidewalks
Large Commercial Sidewalks
Pedestrians

Elements

- Sidewalks*
- Pedestrian Crossings*
- Pedestrian Refuge Islands*
- Curb Extensions*
- Accessibility Ramps
- Vision-Impaired Guidance
- Signage and Wayfinding
- Pedestrian Countdown Signals + Clocks
- Lighting
- Seating
- Water Fountains
- Weather Protection
- Curbs
- Waste Receptacles
- Active Building Edges
- Trees and Landscaping
Pedestrians

Elements: Sidewalks

- Frontage Zone
- Clear Path
- Street Furniture/Curb Zone
- Enhancement/Buffer Zone
Pedestrians

Elements: Pedestrian Crossings

Existing

Reconstruction
Pedestrians

Elements: Raised Crossings
Pedestrians

Further Guidance

Designing with Existing Utilities

Designing with Existing Trees
Cyclists
Speed, Variations and Dimensions

Cycles

Tricycles, Cycle-Rickshaw, & Pedicabs.

Cargo-bikes & Cycle Trucks

- Cycles: 1.8-2.2m, 0.7m
- Tricycles, Cycle-Rickshaw, & Pedicabs: 2.2-5m, 0.7-1m
- Cargo-bikes & Cycle Trucks: 1.8-2.2m, 1.8-2.2m

- 0 km/h
- 8 km/h
- 20 km/h
- > 30 km/h
Cyclists

Key Network Considerations

- Safe
- Connected and Continuous
- Comprehensive Coverage
- Direct
- Key Destinations
- Sight lines
- Comfort and Quality
- Signage and Communication
Cyclists

Geometry

- Conventional Cycle Lane
- Buffered Cycle Lane
- Curbside Buffered Cycle Lane
- Parking Protected Cycle Track
- Raised Cycle Track
- Cycle Street
- Greenway
Cyclists

Elements

- Cycle Racks
- Cycle Parking Corral
- Cycle Parking Structures
- At-grade marked Buffers
- Advanced Stop Boxes
- Two-stage Turn Queue Box
- Corner Refuge Islands
- Planted Buffer
- Concrete Buffer
- Traffic Diverters
- Wayfinding
- Cycle Signals
- Cycle Share Stations
- Cycle Bridges & Underpasses
Cyclists

Further Guidance

Cycles at Transit Stops

Protected Cycle Intersections

Parking protected cycle track behind bus bulb
This design works with cycle lanes that are against the curb. It maintains the integrity of the cycle lane direction and height. The change in curb height alerts pedestrians to the presence of a cycle lane, but the straight, flat shape means that cyclists are less likely to slow down.

Parking protected cycle track on bus bulb
This design is most appropriate where transit stop usage is high and transit riders take priority over fast cycle travel. It provides the best pedestrian access to the stop, since the cycle lane is at the same level as the stop for its entire length. Though the design favors pedestrians and may slow cyclists down, it also creates the most opportunities for conflicts.

Buffered cycle lane behind bus bulb
This design is best on streets with no parking lane, and it is the only design that is possible without an extension into the roadway. The angled geometry forces cyclists to slow down the cycle lane and should ensure that sidewalk paths remain safe and clear.
Cyclists

Cycle Share

Station Coverage and Size

Station Location

Station A

Station B

300m (5 min walking)

300m

Configuration 1. Parking spaces adjacent to sidewalks

Configuration 2. Parking spaces adjacent to cycle lanes

Configuration 3. On very wide sidewalks

Configuration 4. In adjacent public spaces, parks, or destination sites outside of the public right-of-way
Local Culture & Character
Street Activity
Building Edges
Street Scale & Width
Block Size
Destinations
Mix of Uses
Density
Network & Hierarchy
Natural Environment
Mode Share
STREETS
Streets

1. Pedestrian Only Streets
2. Laneways and Alleys
3. Parklets and Pocket Parks
4. Pedestrian Plazas
5. Commercial Shared Streets
6. Residential Shared Streets
7. Residential Streets
8. Neighborhood Main Streets
9. Central One-way Streets
10. Central Two-way Streets
11. Transit Malls
12. Large streets with Transit
13. Grand Streets
14. Historic Streets
15. Elevated Structure Improvements
16. Elevated structure Removal
17. Streets to Stream
18. Temporary Closures
19. Post Industrial Revitalization
20. Waterfront and Parkside Promenade
21. Streets in Informal Settlements
Streets in Context

1. Pedestrian Only Streets
2. Laneways and Alleys
3. Parklets and Pocket Parks
4. Pedestrian Plazas
5. Commercial Shared Streets
6. Residential Shared Streets
7. Residential Streets
8. Neighborhood Main Streets
9. Central One-way Streets
10. Central Two-way Streets
11. Transit Malls
12. Large streets with Transit
13. Grand Streets
14. Historic Streets
15. Elevated Structure Improvements
16. Elevated structure Removal
17. Streets to Stream
18. Temporary Closures
19. Post Industrial Revitalization
20. Waterfront and Parkside Promenade
21. Streets in Informal Settlements
Neighborhood Main Street
Neighborhood Main Street
Residential Streets
Residential Streets
Grand Streets
Grand Streets
Shared Streets in Commercial Areas
Shared Streets in Commercial Areas
Shared Streets in Residential Areas
Shared Streets in Residential Areas
Streets with Elevated Structures
Streets with Elevated Structures
Context 1: Neighborhood Main Street
Context 2: Central Two-way Street
Context 3: Transit Mall
Global Case Studies

1. Abu Dhabi, UAE
2. Accra, Ghana
3. Amsterdam, The Netherlands
4. Auckland, New Zealand
5. Bangalore, India
6. Bangkok, Thailand
7. Bogota, Colombia
8. Brussels, Belgium
9. Buenos Aires, Argentina
10. Cape Town, South Africa
11. Chennai, India
12. Copenhagen, Denmark
13. Delhi, India
14. Fortaleza, Brazil
15. Glasgow, Scotland
16. Gothenburg, Sweden
17. Guangzhou, China
18. Gurgaon, India
19. Hangzhou, China
20. Istanbul, Turkey
21. Jakarta, Indonesia
22. Jerusalem, Israel
23. Lima, Peru
24. London, United Kingdom
25. Melbourne, Australia
26. Medellin, Colombia
27. Mexico City, Mexico
28. Moscow, Russia
29. Milan, Italy
30. Nairobi, Kenya
31. New York City, USA
32. Paris, France
33. Puebla, Mexico
34. Pristina, Kosovo
35. Reggio Emilia, Italy
36. San Francisco, USA
37. Seoul, South Korea
38. Singapore, Singapore
39. Stockholm, Sweden
40. Sydney, Australia
41. Toronto, Canada
42. Utrecht, The Netherlands
43. Yokohama, Japan
44. Zoeterdam, The Netherlands
Global Case Studies

Grand Streets: Avenida 9 de Julio, Buenos Aires, Argentina

LOCATION: Montserrat, Buenos Aires, Argentina

CONTEXT: High-density mixed-use

RIGHT-OF-WAY: 140m

SIZE: 2.7 km

COST: 150 million ARS (15.9 million USD)

FUNDING: Public

MAX. SPEED: 60km/h

Credit: City of Buenos Aires
Global Case Studies
Grand Streets: Avenida 9 de Julio, Buenos Aires, Argentina

Key Elements
1. New four-lane, center-running BRT transitway replacing 4 mixed-traffic travel lanes.
2. Level-boarding central platform.
3. Planted side medians.
4. Central walk-through pedestrian paths connecting all the stations on the avenue.
5. Pedestrian markings and LED signals and countdown clocks added to connect stations.

Users–bar legend:
- Pedestrian space
- Cycles
- Transit
- Mixed traffic
- Landscape
- Parking

Project Timeline
January 2012–July 2013

Evaluation
-98% Decrease in the number of crashes since the creation of Metrobus.
-32% Decrease in travel times on the avenue.
-63% Decrease in bus travel times due to BRT implementation.
-5,615 Reduction of tons of CO₂ equivalent per year.
Global Case Studies
Grand Streets: Avenida 9 de Julio, Buenos Aires, Argentina

Keys to Success

- Interagency coordination.
- Vehicle fleet upgrade and driver training.
- Context-oriented design.
- Public participation and involvement.
- Commitment from the city to improve the transit infrastructure along the corridor.

Involvement

- Public agencies
  - City of Buenos Aires, federal government, bus operators.
- Citizen associations and nonprofits
  - Local nonprofits and associations of residents, bus drivers, taxi drivers, and shopkeepers.
# Global Case Studies

## Neighborhood Main Streets: St. Mark's Road, Bangalore, India

**LOCATION:** Bangalore, India  
**CONTEXT:** Central business district  
**RIGHT-OF-WAY:** 18–20m (on average)  
**SIZE:** Approximately 1 km  
**COST:** 1.15 billion INR (20 million USD) for the first phase  
**FUNDING:** Public  
**MAX. SPEED:** 40km/h

![Context Map](image)

![Credit: Jana Urban Space](image)
Global Case Studies

Neighborhood Main Streets: St. Mark's Road, Bangalore, India

Key Elements

1. Enhanced and extended sidewalks.
2. One-way protected cycle tracks.
3. Consistent travel lanes.
4. Dedicated and paved bus, auto rickshaw, and parking bays.
5. Landscaped strip between the motorized and nonmotorized paths.
6. Protection and enhancement of existing trees with pits and guards.
7. Reconfiguration of underground utilities with the creation of access chambers for utility lines.

Evaluation

+250%
Increase in pedestrian volume.

-3 minutes
Wait time at pedestrian crossings reduced to 2 minutes from 5 minutes.

12 seconds
Pedestrian crossing time reduced to 12 seconds, with shorter crossing distances.

Project Timeline

2011–2015

Users—bar legend:

- Pedestrian space
- Cycles
- Transit
- Mixed traffic
- Landscape
- Parking
Global Case Studies

Neighborhood Main Streets: St. Mark’s Road, Bangalore, India

**Keys to Success**

- Interagency coordination.
- Public participation and involvement from the early stages of the project.
- Documentation and verification of existing utilities as part of planning and design process.

**Involvement**

- **Public agencies**
  - Government of Karnataka, Bangalore
  - Municipal Corporation (BBMP), Bangalore
  - Development Authority, KPTCL, Traffic Police, Bangalore Metropolitan Transport Corporation (BMTC), BESCOM

- **Nonprofit organizations**
  - Jana Urban Space, Janaagraha Centre for Citizenship and Democracy

- **Designers and Engineers**
  - Jana USP (Designer), NAPC (Contractor)
Global Case Studies
Share Streets: Fort Street, Auckland, New Zealand

LOCATION: Auckland CBD, New Zealand
CONTEXT: Mixed-use
RIGHT-OF-WAY: 19–20m
SIZE: Area in and around Fort Street
COST: 23 million NZD (16 million USD)
FUNDING: CBD targeted rate
PROJECT SPONSORS: Manager, CBD Projects, Auckland City Council
MAX. SPEED: No posted speeds
Global Case Studies
Share Streets: Fort Street, Auckland, New Zealand

Key Elements
1. Removal of any demarcation between pedestrian and vehicles such as curbs and bollards.
2. Extended areas for open-air activities.
3. Pedestrians can walk on the entire right-of-way.
4. Accessible routes along building lines for the blind.

Removal of all parking spaces.
Restricted loading times.
Street furniture and landscaping.

Evaluation
- Increase in pedestrian activity during peak hours: +54%
- Increase in consumer spending: +47%
- Decrease in vehicle volume: -25%
- Felt safer in the area: 80%

Users—bar legend:
- Pedestrian space
- Cycles
- Transit
- Mixed traffic
- Landscape
- Parking

Project Timeline
- June 2009—April 2013

1. Conceptualization
2. Planning
3. Public Involvement
4. Design
5. Construction
Global Case Studies
Share Streets: Fort Street, Auckland, New Zealand

Keys to Success

Collaboration with key stakeholders.
Testing design variations.
Pre- and post-monitoring and evaluation in order to communicate the impacts of the project.

Involvement

Public agencies
Auckland Council, Auckland Transport
Private group
Local business owners and operators
Citizen associations and unions
Blind Foundation
Designers and Engineers
Boffa Miskell, Jawa Structures, TPC (traffic engineering), LDP (lighting)
Grand Streets, Avenues, and Boulevards | Transit Malls
Case Study | Swanston Street, Melbourne, Australia

Overview
Swanston Street is one of the main north-south streets in the city of Melbourne. It is an active retail, residential and transit priority street design.

Key Elements
- Increased sidewalk width
- Improved user legibility of the street
- Dedicated cycle lanes
- Raised tram platforms to allow universal access
- Removal of taxi and vehicle access at all times
- Bicycle, delivery and emergency vehicle access maintained
- High quality street furniture including planters and street furniture
- Branded streetscape elements
- Transit stops located along public spaces

Lessons Learned
Community engagement throughout the project ensured information sharing and engagement with the community throughout the design development. A full-time community liaison officer shared information with local residents and 'stakeholders' and dealt with issues as they arose throughout the construction period.

Evaluation
- Increase in cycle volumes

Graphic: City of Melbourne

Before

After

Graphic: City of Melbourne

Project Timeline (Phases 1 & 2)
June 2010 - June 2012 (26 Months)

Credit: City of Melbourne

Richard Smithers
Melbourne, Australia
Swanston St
Gotgatan, Stockholm, Sweden

Daniel Firth

7.4.2 STREETS

Grand Streets, Avenues, and Boulevards | Central 2 Way Streets

Case Study | Gotgatan, Stockholm, Sweden

Overview

Gotgatan is a major main street in the inner-city Södermalm district, with offices, shops, and restaurants serving a dense residential district. This street is also the most important route for cyclists entering the central business district from the southern suburbs. The street space has been redeveloped on a trial basis to provide better opportunities for city life and better access for cyclists and pedestrians.

Key Elements

1. Increased sidewalk width with zones for temporary street furniture.
2. Island cycle lanes in the former parking bays.
3. Cycle parking facilities for 46 bikes in former vehicles parking spaces.
4. Green ways for cyclists and at least 12 km of cycle lanes through the downtown area.
5. Reduction from two motor vehicle lanes in each direction to one in each direction.
6. Reduction in speed limit from 60 km to 30 km.
7. Measures to improve goods deliveries.
8. Increased parking charges to reduce turnover.

Before

Credit Photo: City of Stockholm

After

Credit Photo: City of Stockholm

Lessons Learned

A trial is a successful method to achieve change quickly when unsure of the results. Make clear that the process is a trial so that users don’t think the changes are being done cheaply. Activate areas of temporary furniture to make new uses clear. Deliveries are a key point of conflict and need careful consultation and design.

Project Timeline

June 2013 - June 2014 (9 Months)

Evaluation

- +90% increase in cycle volume
- 68% pedestrians declared that the street environment is better than before
- 72% cyclists felt safer after the implementation
- 40% business owners think the street environment is better
HEJ CYKLIST!
Du er nummer

3807
I DAG
og nummer

2766554
I ÅR
der cykler forbi her

GOD TUR
og tak fordi du cykler i byen!

METRICS
Before & After

**Project Site Conditions**
- Context
- Scale & Size
- Facilities by user
- Signals & Signs
- Surface Quality
- Landscape
- Artwork
- Noise
- Air Quality
- ....etc

**Use & Activity**
- Counts by user
- Variety of activities
- Use at different times of the day & night
- Travel & wait times
- Commercial activity
- ....etc

**Outcomes**
- Road Safety
- Multi-modal Mobility & access
- Speed
- User satisfaction
- Air Quality
- Urban Heat Island Effect
- Storm water treated
- ....etc
<table>
<thead>
<tr>
<th>Category</th>
<th>Example Metric</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>People on Foot and Universal Access</td>
<td>Pedestrian counts</td>
<td>Measure at different times of the work day, at peak hours and on weekends. Break down by gender and age categories and note locations where people are moving on the sidewalk or in the roadbed.</td>
</tr>
<tr>
<td></td>
<td>Pedestrian movement at intersections</td>
<td>Percentage of people crossing compliantly at the intersections, at unmarked crossings, or without waiting for pedestrian signals. Note specific locations.</td>
</tr>
<tr>
<td></td>
<td>Pedestrian activities</td>
<td>Count how many people are sitting, standing, and pausing, and note locations.</td>
</tr>
<tr>
<td></td>
<td>Pedestrian comfort surveys</td>
<td>Use qualitative surveys to identify the reason, purpose, frequency, and duration of visits.</td>
</tr>
<tr>
<td>People on Cycles</td>
<td>Cycle counts</td>
<td>Measure at different locations throughout the site and note where riders are using cycle facilities. Break down by gender and age categories to confirm if a wide range of people feel comfortable riding on the provided facilities.</td>
</tr>
<tr>
<td></td>
<td>Number of people using cycle share facilities</td>
<td>Compare with other station sites or citywide system.</td>
</tr>
<tr>
<td>People Using Collective Transit</td>
<td>Number of people using transit by type</td>
<td>Measure at different times of the work day, at peak hours and on weekends. Break down by age, gender, ethnicity, disability status, and income level. Count the number of different transit services, noting whether they are public or privately run. Document vehicle types, boarding areas, and payment methods.</td>
</tr>
<tr>
<td></td>
<td>Average wait time for transit passengers</td>
<td>Measure how long people wait for the arrival of transit service.</td>
</tr>
</tbody>
</table>
HOW DO WE MEASURE SUCCESS?

Mobility-Automobile Safety

THEN

Mobility-Automobile Safety

Mobility-Automobile Safety
HOW DO WE MEASURE SUCCESS?

Access/Mobility (Multi-modal)  Public Health + Safety  Economy

Public Health + Safety  Livability/Quality of Life  Equity

NOW

Environmental Quality  Livability/Quality of Life  Equity

NOW
APPLYING THE TOOLS
ACCRA, GHANA
Existing Street

Remove Cars, Allow Limited Loading

Temporary Surface Treatment
Temporary Street Closure

Remove Cars. Allow Limited Loading

Temporary Surface Treatment
Temporary Street Closure

- Trees to add Shade
- Loading at Limited Hours

New Paving
Permanent Street Closure

Trees to add Shade

Loading at Limited Hours

New Paving
Permanent Street Closure
Remove Pedestrian Bridge
Add At-grade pedestrian crossing
Add At-grade pedestrian crossing
Widen Sidewalks
Widen Sidewalks
Exchange space for private vehicles for cycles and public transport.
Exchange space for private vehicles for cycles and public transport
Most people in the world live in cities, and investment is moving from highways and sprawl, to transit and cities, and the work of planning and streets are designed. This increasingly visible imbalance is shifting the way cities are currently designed for cars. This increasingly room for the idea that advancement is associated with increased car use and infrastructure investment for private automobiles. That belief is the foundation of the mistaken idea that only cars should be accommodated by streets. High volumes of car traffic and reliance on personal motorized vehicles for urban transportation place high costs on society. Transportation decisions made today will impact the quality they enjoy, and the carbon they emit for decades into the future. Cities face a decision every time they invest in transportation: they can become more car-oriented, with hollowed-out centers and vast highway networks, or more transit-oriented, with denser cores, compact neighborhoods, and sustainable streets. These are public goods that once invested heavily in roads and highways at the expense of the cities. This new world does not have the expense of the cities. This new world does not have mistakes increasingly recognized in countries that people do not belong in public space. Fast-growing cities have the opportunity and that people do not belong in public space. www.globaldesigningcities.org
Available early 2016

PRE-ORDER TODAY

www.globaldesigningcities.org

Skye Duncan
Director, Global Designing Cities Initiative
skye@nacto.org

@GlobalStreets