Red Bus Lane Treatment Evaluation

William Carry, Eric Donnell, Zoltan Rado, Martin Hartman, and Steven Scalici

Originally Presented at the 2012 ITE Technical Conference and Exhibit
March 5, 2012
I. Background: why red bus lanes?

II. NYCDOT experience with red bus lane treatments

III. Field and lab testing methodology and results

IV. Recommendations for practitioners
Why Red Bus Lanes?

• Part of NYC’s BRT tool box; in use since 2007
• Visual cue to drivers to obey bus lane rules
• Reduces unauthorized bus lane use, esp. illegal standing/parking
• No negative impacts on non-bus driver behaviors
NYCDOT Experience with Red Bus Lane Treatments
Red Bus Lane
Treatment Goals

• Agency goals:
 – High visibility
 – Durability - at least 3 years
 – Safety - adequate skid resistance
 – Low cost
 – Ease of installation
 – Ease of patching – utility cuts

• Initial product selected
 – Epoxy street paint
Paint on New Asphalt: First Avenue (1 Year)

Epoxy Street Paint – Minimal Surface Prep
First Ave. bet. 15th and 16th St.
Paint on Existing Asphalt: First Avenue (1 year)

Epoxy Street Paint – Minimal Surface Prep
First Ave. bet. 14th and 15th St.
Bus Stops: Special Challenges

34th Street (3 Years)

34th St. EB at Second Ave.
Bus stop location

34th St. bet First & Second Aves.
Non-bus stop location
Adhesion to AC Surfaces

• Epoxy street paints applied to new asphalt last 3-5 years without failing.
• Epoxy street paints applied to existing asphalt typically fail in less than one year.
• Epoxy street paints wear faster at bus stop locations.
• Epoxy street paints applied to new asphalt at bus stops will likely fail in two to three years.
Paint on Concrete: Fordham Rd (1 year)

West 207th St. at Tenth Ave.

Fordham Rd. in the vicinity of Sedgwick Ave.
Microsurfacing on Concrete: First Avenue (9 Months)

First Ave. bet 88th and 89th St.
Adhesion to Concrete Surfaces

• Red-paint products applied to existing concrete surfaces will fail in six months to one year.
• Portland cement-based micro surfaces applied to existing concrete roadways will fail in six months to one year.
• Existing concrete roadways present a particularly difficult challenge when applying a red treatment for a bus lane.
Red Lane Product
Field and Lab Testing
Methodology and Results
April 2010 - NYCDOT issued a request for expressions of interest (RFEI) to red lane product manufacturers.

Purpose - to identify potential red lane products and application solutions that might be right for NYC.

Testing - DOT received 8 responses and invited 6 manufacturers to participate in lab and field testing.

Study Team - Lab and field testing conducted in partnership with the Pennsylvania State University.
Products Tested

<table>
<thead>
<tr>
<th>Product ID</th>
<th>Product Type</th>
<th>Field Test</th>
<th>Lab Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red Epoxy Street Paint, Brand A</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Red Epoxy Street Paint, Brand B</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Epoxy with Red Aggregate (anti-skid), Brand B</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Epoxy with Red Aggregate (anti-skid), Brand C</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Red MMA with Aggregate (anti-skid), Brand D</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Red-Tinted Portland Cement Micro Surface, Brand E</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Red-Tinted Portland Cement Micro Surface, Brand F</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Red Asphalt Concrete Micro Surface, Brand G</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Chip Seal with Red Binder, Brand G</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Field Test Methodology

- DOT identified eight test patches on the Third Avenue bus lane between 36th and 42nd Streets
- Asphalt in good condition with a high volume of bus traffic during weekdays
- Manufacturers applied their product(s) to their assigned test patch in October 2010
- Durability and friction testing performed immediately after October 2010 application and again in April 2011
Team determined percentage of product remaining after six months

- Total Picture Area: 512x512=262,144 pixels
- Color Covered Area: 200,618 pixels
- Uncovered Surface Area: 61,526 pixels

Percent Coverage: 76.53%
- Team determined coefficient of friction
- Plot of friction vs. slip speed

Source: Hall et al., NCHRP Web-only Document 108 (2009)
• Prepared eight 2.5’ by 2.5’ AC test slabs using DOT AC mix
• Manufacturers applied their products to a designated slab
• Team measured product coverage (100%) and skid resistance
Accelerated Wear Testing

• Slabs were subjected to accelerated traffic wear using Model Mobile Load Simulator (MMLS) at PSU
 – 4 pneumatic rubber tires
 – Preliminary testing with uncoated tires
 – Subsequent testing with silica carbide treatment on two tires
 – Linear motion tire setting (7,200 cycles/hr over 4-ft length)
• Same photo imaging and friction testing as in field test
Sample Field Testing Result

October 2010

April 2011

4.6% Reduction in Coverage

• Notes: product color not bright enough; product exhibited slight deterioration at edges; product texture attracts trash and grime
Edge Deterioration
Sample Lab Testing Result

After 766,800 cycles with uncoated tires

+300,000 cycles with coated tires

<table>
<thead>
<tr>
<th>Cycles</th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>100</td>
</tr>
<tr>
<td>100,000</td>
<td>75.8</td>
</tr>
<tr>
<td>200,000</td>
<td>65.7</td>
</tr>
<tr>
<td>300,000</td>
<td>29.3</td>
</tr>
</tbody>
</table>
Lab and Field Testing Results

• The three top performing products:
 – StreetBond CL, a Quest Construction product
 – Mark 177 System, a Dow POLY-CARB product
 – Cape Seal, a New York Bituminous Products Corporation product

• The Portland Cement-based micro surfaces demonstrated inferior durability.

• All products had friction scores at least as high NYC asphalt after six months.
Study Recommendations

• Portland cement-based micro surfaces are not effective as a red bus lane treatment.
• Although durable, products designed as anti-skid treatments tend to attract more dirt and debris.
• Epoxy street paint products provide a durable red bus lane solution for new AC surfaces.
• AC-based micro surfaces are a promising red bus lane treatment for new and existing AC surfaces and should be evaluated further.
• Aggressive pre-treatment, including shot blasting and power washing, appears to improve the performance of epoxy street paints on existing asphalt roadways and should be evaluated further.
Thank You

Contact Information:
Will Carry
Sr. Project Manager
New York City Department of Transportation
wcarry@dot.nyc.gov
(212) 839-6657