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Abstract
A significant amount of delay to transit vehicles in urban areas is caused by traf-

fic signals. Implementation of signal priority has the potential to reduce control delay

caused by traffic signals. The implementation of these systems requires engineering

studies that address both transit and traffic signal operations. A comprehensive pro-

gram requires coordination between the transit agency and the transportation depart-

ment to address needs of both agencies and users. The City of Portland and the Tri-

County Metropolitan Transportation District of Oregon (Tri-Met) have been working

on a program that exhibits the elements of such an effort. This article details the efforts

of the project and the methodology for developing signal timing and detection distance

settings.

Introduction
The City of Portland and Tri-Met have undertaken a program to improve bus

service by implementing a signal priority system. The current project is the result
of several years of experimentation with various techniques (Kloos and Turner
1999). The system in place uses a 170 HC11 traffic controller, an evolutionary
piece of hardware, as part of an eventual upgrade to a 2070-like Advanced Traffic
Controller (ATC). The Wapiti software used by the City, the Oregon Department
of Transportation (ODOT), and most of the neighboring jurisdictions has been



Journal of Public Transportation, Vol. 5, No. 2, 2002

116

upgraded to provide added bus priority features. The implementation allows
green extension for the bus phase and red truncation when in nonbus phase(s)
while also maintaining coordination. The 3M Opticom system is used as the
detection system, and an automatic vehicle location (AVL) system is used to con-
trol the emitter.

This research summarizes the issues associated with the implementation of
signal priority, specifically the determination of a detection range for an intersec-
tion. The detection range for the buses is determined by the location of bus stops
upstream of the traffic signal, sight distance to the intersection, extension time
available at the intersections, and location of the nearest upstream traffic signal.
This article describes the key factors for distance setting and recommends rules
for implementation of the range setting. In addition, it examines the bus priority
distance setting at one intersection in more detail, providing a summary of the
applications and constraints using actual headway and detection range values.

Background

Portland has a long history of providing signal priority for transit. The light
rail system, Metropolitan Area Express (MAX), began service in 1986 with high
priority or preemption at many of the signals. The level of priority has steadily
increased, allowing more efficient travel between the stations.

Bus priority experience has included three field tests: Powell Boulevard
Pilot Project in 1993, Multnomah Boulevard test in 1994, and Tualatin Valley
Highway test in 1996. The Powell Boulevard test has been the most publicized
(Kloos, Danaher, Hunter-Zaworski 1994). This study evaluated several detection
technologies for inclusion in the system. The technologies included the TOTE
system by McCain, the LoopComm system by Detector systems, and the
Opticom by 3M. Signal priority algorithms were limited in these tests to preserve
traffic signal coordination. In each of these tests, Portland’s Bureau of
Transportation worked with Tri-Met.

Transit signal priority measures include passive, active, real-time, and pre-
emption.
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• Passive strategies attempt to accommodate transit operations through the use
of pretimed modifications to the signal system. These adjustments are com-
pleted manually to determine the best transit benefit while minimizing the
impact to other vehicles. Passive priority can be simple changes to the signal
timing or systemwide retiming to address bus operations. The strategies can
utilize transit operations information, such as bus link travel times, to deter-
mine signal timing coordination plans.

• Active strategies adjust the signal timing after sensing the arrival of a bus.
Depending on the application and capabilities of the equipment, active prior-
ity may be either conditional or unconditional. Unconditional strategies pro-
vide priority regardless of the transit vehicle status (i.e., regardless of passen-
ger loads or lateness).

• Real-time strategies are implemented by systems that provide continuous
feedback between the priority request generator (the bus) and the priority
request server (unit that discerns which request to serve). Real-time strategies
may also use estimated arrival time information at the intersections to make
control decisions within the system.

• Preemption could be classified separately because it results in changes to the
normal signal phasing and sequencing of the traffic signal. Preemption is most
commonly associated with emergency response vehicles and trains.
Preemption affects the normal operation of the traffic signal and the resulting
traffic flow, which has the potential to impact the safety and efficiency of the
intersection. One of the most important effects is the disruption of coordina-
tion between traffic signals, which may result in significant congestion.

The Portland application, as in many other cities, is focused on active pri-
ority that make changes to the signal timing to accommodate buses while
remaining in a coordinated system of traffic signals.

System Description

Tri-Met is a regional transit agency that serves the three county area in
Portland, Oregon. Tri-Met operates 101 bus routes, as well as light rail and para-
transit services for seniors and people with disabilities. Tri-Met has continued to
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grow transit ridership by offering exceptional service and continually working to
improve the system.

The agency has developed an Intelligent Transportation Systems (ITS) plan
to ensure the Portland region is well prepared to realize the benefits of ITS. Tri-
Met has planned projects that support regional integration, build on the agency’s
existing infrastructure, and offer opportunities for future ITS expansion (Parsons
Brinkerhoff, Batelle 2001). One of the 12 projects included in this plan is signal
priority. The initial scope of the signal priority project is to provide priority at 250
traffic signals on seven routes in the City. Total project cost is estimated at $4.5
million with initial field installation, completed in July 2001, and field-testing to
be completed by summer 2002.

Tri-Met has been using AVL to monitor and control its bus operation for two
years. The AVL system uses onboard Global Positioning Systems (GPS)
receivers to monitor the buses via the Bus Dispatch System (BDS). The BDS
system, developed by Orbital Sciences Corporation, is connected to the vehicle’s
onboard computer, which contains route and schedule information. Integration of
this information allows the bus to determine schedule status on a real-time basis.
This permits the Smart Bus concept to only allow the bus to activate the Opticom
emitter when the vehicle is behind schedule and if certain other criteria are met.

Project Description

The first phase of the project involved implementation on Route
104–Division and Route 4–Fessenden in Portland. The Division route operates
mainly on SE Division Street. The bus route travels through 31 traffic signals (in
each direction), along 10 miles of roadway, extending from downtown Portland
to the City of Gresham. The extent of the signal priority project is within the city
limits of Portland outside of the city center, stopping 3 miles west of the bus
route’s eastern terminus, downtown Gresham. This corridor carries 6,500 riders
per day with an average load of 26 passengers.

The Fessenden route is more circuitous, traveling on several arterials and
collectors in North Portland. The route is approximately 9 miles in length with
33 signals on the outbound route and 25 signals on its inbound route. Portions of
the route operate on a couplet outside of the downtown. The Fessenden route car-
ries 7,820 riders per day.
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These routes were good candidates for signal priority because of the spac-
ing of signals, their ridership, and headways (7 minutes during the peak hour).
The corridors also have a number of simple two-phase intersections, which are
simplistic from the traffic engineering perspective. Further, because of the nature
of the routes and lower traffic intensities, changes to the signal timing were of
less concern on several of the intersections.

An additional advantage of selecting the Opticom system in Portland is that
along with signal priority, the traffic signals are also upgraded with emergency
vehicle (fire and emergency medical services vehicles only) preemption equip-
ment. The majority of the traffic signals on these routes previously did not have
preemption equipment installed because the intersections predated the equip-
ment.

Methodology
Signal priority consists of two components: the bus must be detected by the

traffic signal and the traffic signal must accept the request for priority. As
described above, Portland evaluated several detection methodologies in its pilot
project and determined that the Opticom system by 3M would be utilized for bus
detection. The Opticom system is currently the most widely used priority and
preemption detection system in the United States.

Bus Detection System

The challenge for implementing the concept successfully is the detection
system, which must place a call at an appropriate time in order to be effective. A
call placed too late during the bus phase can result in a missed opportunity. A call
placed to soon can result in the provision of green time that cannot be used effec-
tively.

The Opticom system is relatively simple: data are transmitted from the bus
to the traffic signal via an emitter and an optical detector. An emitter mounted on
the bus is activated to send an encoded message to the traffic signal. A detector
located at the intersection receives the signal and converts it to a message to the
controller. A phase selector within the controller cabinet makes the request for
priority within the traffic signal controller and also logs the information within
the unit.
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Opticom can provide two pieces of information. First, the system requests
an immediate request for service. This request for service can be controlled in
two ways. The bus, using the Smart Bus concept, controls the time of the request.
The detection range setting of the Opticom receiver controls the time of the
request. The Opticom transmitter can also provide a bus identification number,
which can be used to distinguish bus types. Setting the distance for the detection
range provides an opportunity to increase the usefulness of the priority request
by requesting priority at a location that increases the likelihood that the bus will
progress through the signal during the priority call. Other criteria that control the
emitter within the Smart Bus concept are shown in Figure 1. The Smart Bus only
activates the emitter when the bus is on route, in service for passengers, its doors
are closed, or when the bus is running late. The threshold for determining
whether the bus is late is set at 90 seconds. Once the bus has reached this thresh-
old and is behind schedule, the emitter will be active until it has gained 60 sec-
onds and is less than 30 seconds behind schedule.

Traffic Signal Timing

The traffic signal software used by the City provides a range of priority and
preemption options as well as recovery options to reduce bus delays. The strate-
gies are in place throughout the day while buses operate on the system. Priority
can be requested on any of the legs of the intersection. The maximum extension
is constrained by intersection elements, but range from 0 to 40 seconds. The trun-
cation also is dependent on the configuration of the intersection. Table 1 sum-
marizes some of the limitations associated with the signal timing as it relates to
bus operations.

During this implementation, red truncation and green extension are utilized
to provide priority. The basic concept of green extension and red truncation is
generally well understood. The maintenance of coordination requires that the
phase length changes be implemented within the constraints of the overall cycle
length; considerations include minimum walk time, flashing DON’T WALK time,
and minimum vehicle green time.
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Figure 1. Decision framework for emitter activation
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Table 1
Traffic Signal Timing Considerations for Signal Priority

Parameter Limitation Comment

Pedestrian Lack of pedestrian detection (push Presence of pedestrian detection
detection buttons for actuation) requires the opposing increases the potential responsiveness

pedestrian phase to time every cycle of the intersection to serve transit

Pedestrian Time for flashing Don’t Walk cannot Pedestrian detection reduces the need
timing be reduced in any case to recall pedestrian phases each cycle,

thereby improving the responsiveness
to transit

Multiphase Phase skipping is not allowed in the Additional phases at intersections
intersections State of Oregon; thus minimum vehicle increase the amount of required time

times and clearance times must be for service
considered for all phases (legislative
limitation)

Cycle Low cycle lengths reduce the flexibility The trade-off between flexibility and
lengths of the engineer to extend the timing efficiency at the intersections has been

provided to the bus, although may consistently discussed; lower cycle
provide better responsiveness overall length typically improves bus operations

Priority Decision Logic

The time the call is entered dictates the response of the controller. The con-
troller logic determines whether to use green extension (extend a current green
indication for the bus) or red truncation (shorten other nonbus phases), depend-
ing on whether the controller is in the bus or nonbus phase, respectively. In the
case of a simple two-phase intersection, the logic is simplified, and for purpos-
es of discussion, this case will be reviewed. To set the detection range, both
extension and truncation must be considered to determine an appropriate dis-
tance from the intersection. A procedure developed as a part of this project
establishes the location of Opticom detectors on the bus line and determines the
range at which the detector will identify the bus and initiate the bus priority
plan. As shown in Figure 2, the decision is based on the current status of the bus
phase when the call is received.

Priority Distance Setting

Establishing the priority distance is a critical portion of the implementation.
Ideally, the detection would occur at the furthest upstream point to give advanced
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Figure 2. Decision framework for priority plan selection

notice for the approach of the buses. Because the Opticom system results in an
immediate request for service, the distance from the traffic signal at which the
call is received dictates the length of the extension possible. To address limita-
tions, the detection range is set to reduce the length of the call based on the
amount of priority time that is available within the extension portion of the pri-
ority service. Essentially, the length of advance time that can be accommodated
is limited by lack of knowledge on the desired time of service and limitations in
the controller software’s decision-making logic. The maximum advance time is
the length by which the bus phase can be extended.

For purposes of further explanation, a simple two-phase intersection with
buses on both phases will be described. While simplistic, the explanation is also
practical because the intersection of N. Albina Avenue and N. Killingsworth
Street is exactly this configuration. As shown in Figure 3, Route 4 Fessenden
operates on phase 2 (N. Albina Avenue) and Route 72 Killingsworth operates on
the cross-street phase 4. At this intersection, the coordinated movement is
Killingsworth Street (the north–south movement).

Green Extension Distance-Setting Procedure 

The green extension plan is used when the call is received on a phase that
is already green (i.e., a call on phase 2 is received from Route 4 while phase is
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Table 2
Traffic Signal Timing Descriptions

Treatment Description

Passive Priority

Adjust cycle length Reduce cycle lengths at isolated intersections
for the benefit of the bus.

Split phases Introduce special phases at the intersection
for the bus movement while maintaining
original cycle length.

Areawide timing plans Preferential progression for buses through
signal offsets.

Bypass metered signals Buses use special reserved lanes, special
signal phases, or are rerouted to nonmetered
signals.

Adjust phase length Increased time for approaches with buses.

Active Priority

Green extension Increase phase time for current bus phase.
Early start (red truncation) Reduce other phase times.
Special phase Addition of a bus phase.
Phase suppression Skipped nonpriority phases.

Real-Time Priority

Intersection Control—Delay Signal timing changes to reduce overall
person delay.

Optimizing Signal timing changes considering the overall
Network Control system performance.

Preemption

Preemption (Unconditional) Bus phase begins when all other intervals are
satisfied.

Preemption (Conditional) Same as above except certain conditions are
used to determine when the bus phase should begin.

green). See Figure 2. The controller coordination timing and the demand of the
side street limit the amount of green extension that can be provided. Assuming a
call is received before the onset of yellow for the bus phase, the extension of the
bus priority algorithm will start timing at the yield point. If a call was received at
the yield point in this case, the extension time would be equal to the travel time
between the detection point and the intersection. This represents the worst case
under extension.
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Coordinated Bus Phase Green Extension. In this case (Route 4 bus on
phase 2), a call arrives during the green interval for phase 2. The limitation for
green extension is determined by the minimum times for the phase 4 WALK,
FLASH DON’T WALK (FDW), Yellow and All Red clearance intervals (Y+AR),
and the minimum WALK (typically 4 seconds) for phase 2. This assumes that the
bus phase (phase 2) of the next cycle maintains the phase 2 yield point (start of
FDW) for the next cycle after the bus call has arrived. This practice preserves the
coordination with the adjacent signals.

Noncoordinated Bus Phase Green Extension. For the noncoordinated
phase (bus on phase 4), the lengthen plan is similar to what was described above.
In this case, the phase 2 forceoff (start of FDW) remains zero and the phase 4
Y+AR must be accommodated, followed by the minimum phase 2 WALK time.

Figure 3. Case study intersection: N Albina/N Killingsworth
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In either of these cases, it is desirable to set the range to a distance equal to
the travel time associated with the extension time available. This approach lim-
its the amount of unutilized priority provided and ensures that once a call is
received and an extension plan is initiated the bus will pass through the intersec-
tion during the current cycle.

Red Truncation Plans Distance Setting

Red truncation is activated when a call is received on a phase that is not
green. Red truncation reduces the length of the other (nonbus) phases to return
to the bus phase earlier. In this scenario, the forceoffs for all phases change from
their normal value. The worst case under the shorten plan is a received call that
does not allow a truncation. Truncation is limited by the amount of time required
for the recalled phases (pedestrian and vehicle).

Coordinated Nonbus Phase Red Truncation. The nonbus phase is trun-
cated to the new forceoff associated with the bus plan. Truncating the nonbus
phase allows an earlier return to the bus phase. In a two-phase intersection, the
shorten plan is limited by the minimum times for the WALK, FDW, and Y+AR.
The truncation benefit is provided in what normally would be a solid Don’t
WALK (DW) indication for phase 4. In some instances, WALK timing for phase 4
was reduced to provide more flexibility for the buses.

Noncoordinated Bus Phase Red Truncation. The City’s signal timing
policy maximizes the WALK portion of the coordinated phase. For this reason, the
red truncation plan requires a forceoff that truncates the WALK portion and initi-
ates the FDW before its normal forceoff. In this case, the truncation value should
be set to reduce the WALK to an amount that allows the early return to the non-
coordinated phase (phase 4).

In either case, it is desirable to set the range to a distance greater than the
coordinated phase FDW value, so that the bus can be detected with adequate
time for the controller to react. Provided that the proper sight distance exists and
the bus stop spacing allows, the green extension and red truncation plans can be
developed so that a bus will not stop at a traffic signal under off-peak traffic
conditions.
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Operational Issues of Bus Arrival
The arrival of the bus at the traffic signal is dependent on the speed at which

the vehicle is traveling, the impedance it experiences, and the stops that it makes.
These three factors may reduce the range at which it is desirable to place a low
priority call to the controller. As discussed, providing priority to the bus phase
prematurely may not only delay the bus, but it also may reduce the effectiveness
of the traffic signal in its capacity to serve nonbus phase traffic. Each of these
factors was examined to identify operational results associated with the arrival of
the bus at the intersection.

Bus Travel Speed

To set the detection range, the assumed travel speed for the bus was set to
equal the speed limit. In some cases, where the speed limit was greater than the
expected speed, a lower value was used. A lower value was also considered in
areas of denser development, where on-street parking, increased pedestrian
activity, and numerous access driveways can slow the average speed of buses.

Bus Impedance

The impedance the bus experiences en route to the bus stop could result from
pedestrians, cyclists, or parked vehicles. Bus impedance was incorporated into the
travel speed where possible. Field studies during implementation may provide
more insight as to the modifications necessary to accommodate special situations.

Stop Location

Nearside bus stops have been the subject of considerable debate. Nearside
stops have the potential to render a call useless due to bus boarding and alight-
ing in advance of the traffic signal. The initial operating concept was to set the
range of the emitter at a distance 40 feet past the upstream bus stop (between the
bus stop and the next traffic signal). This would eliminate the potential of a bus
requesting priority and then stopping upstream, thereby eliminating the need for
the priority.

Field tests of the Opticom emitter determined that in several locations this
approach limits the range to less than 300 feet, reducing the overall effectiveness
of the system. The potential limitation suggests more careful review of the bus
stop location, possibly relocating it to the far side of the intersection.
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When a bus places a priority call and has to stop upstream of the intersec-
tion, the call may be inappropriate. This occurs frequently because bus stop spac-
ing standards place stops every two blocks (300 to 700 feet upstream of the traf-
fic signal) in many areas throughout the City. To increase the effectiveness of the
priority system, the rules were created for the range setting:

(The range will be set to maximize detection time in advance of the traffic
signal, provided the following rules are followed. The smallest value from these
three rules will be used to set the range for the detector.)

• Rule 1—Extension Time Distance: The allowable range calculation will be
based on the extension time available in the controller. The speed limit will
be used to convert the extension time to an appropriate distance.
Truncation time should not be the criterion, since the benefit of the trunca-
tion suggests additional green time following the truncation should allow
bus passage.

• Rule 2—Bus Stop Distance: The range should be 40 feet downstream of
the bus stop closest to the traffic signal (disregarding nearside stops).

• Rule 2A–Modification to Bus Stop Distance: The first upstream bus stop
will be disregarded if it is within 400 feet of the traffic signal and calcula-
tions per Rule 1 provide a distance greater than 900 feet. In this case, the
distance of the second upstream bus stop will be used for comparison with
the extension time distance.

• Rule 2B—Stop Utilization Modification: Tri-Met’s AVL data will be
reviewed to determine the percentage of buses that stop at the upstream bus
stop. If this number is greater than half, Rule 2 will be followed.

• Rule 3—Traffic Signal Distance: The distance to the nearest upstream traf-
fic signal will be noted to eliminate the potential of a priority call being
received simultaneously at two signals, as this may lead to ineffective calls.

Rule 2A was created to reduce the limitation of closely-spaced bus stops on
the priority corridors. At many of the intersections on the Fessenden and Division
routes, the Extension Time Distance exceeds the Bus Stop Distance. To reduce
the effect of Rule 2 at locations where the first upstream stop is seldom used, Rule
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2A was created. In cases where Rule 2 is overly restrictive, the second upstream
stop will be used as the criteria to compare the extension distance. The logic
behind this decision was that the controller could recover from a call that is lost
at an upstream stop, but it is less desirable to have two interruptions in the nor-
mal system resulting in poor responsiveness when the bus arrives at the traffic
signal.

Ideally, information regarding stop frequency would be used to determine
whether the bus stop upstream of the traffic signal should be considered. In this
initial implementation, no data have been provided and thus only anecdotal obser-
vations will be used to determine whether the bus stops may be disregarded.

Results
The bus priority system has been implemented at 58 of the 72 intersections

on Routes 4 and 104. For evaluation of the bus operation, Tri-Met’s AVL sys-
tem has been used to record the results for the implementation. Each route has
been cut into segments to delineate the effects at each traffic signal. The seg-
ments vary from 800 to 2,500 feet and include up to three signals. Tri-Met’s
AVL system records many different pieces of data about every time any bus
passes by a bus stop. The system records arrival time near a segment to initial-
ize the start of the segment time and segment end time to identify the total trav-
el time for each segment.

Early results have shown that improvements in travel time typically range
from 5 to 8 percent of the overall travel time. On certain segments, the travel time
reduction increases to as much as 24 percent of the travel time, but the value is
highly dependent on several factors such as the length and the number of traffic
signals within the segment.

Bus Priority Distance Setting Example: Northeast 33rd/Sandy
To illustrate the various points made above, we have chosen the

Northeast 33rd/Sandy intersection to provide some additional context relat-
ed to the priority distance setting. This example presents a summary of the
application and constraints of the experience using actual headway and
detection range values.
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Intersection Characteristics

This particular intersection was chosen as an example because it features
both a nearside (inbound direction) and a farside (outbound direction) bus stop
as shown in Figure 4. The Sandy Route 12 travels on the Northeast Sandy
Boulevard corridor operating at 10-minute headways during peak periods. The
speed limit in this vicinity is 30 mph.

Bus Travel Speed

On Sandy Boulevard, the assumed travel speed for the bus was set lower
than the speed limit because of the nature of the corridor in this area. As shown
in Figures 5 and 6, bus ridership and short stop spacing along this corridor result
in low average speeds. Based on field observations, 15 mph was used.

Figure 4. NE 33rd/Sandy intersection
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Figure 5. Farside stop at NE 33rd/Sandy 
(outbound direction)

Figure 6. Nearside stop at NE 33rd/Sandy 
(inbound direction)



• Rule 1—Extension Time Distance: The allowable range calculation is
based on the extension time available in the controller. This intersection
is a simple two-phase intersection operating on a 100-second cycle dur-
ing peak periods and, therefore, is not limited by the extension plan
because approximately 30 seconds can be lengthened for the bus phase.
Using 15 mph (22 feet per second) as the travel speed yields 660 feet for
Sandy Boulevard. For the approach with the nearside stop, ridership
would be evaluated to determine limitations to the extension time.

• Rule 2—Bus Stop Distance: The range should be 40 feet downstream of
the bus stop closest to the traffic signal (disregarding nearside stops). For
the outbound direction (farside stop), the distance was set based on this
rule because Rule 1 was not a limiting factor.

• Rule 2A—Modification to Bus Stop Distance (40 feet downstream of
second stop): In the case of the inbound route, the nearside stop signifi-
cantly limits the priority distance that can be set. Using the second stop
would yield a distance of 445 feet.

• Rule 2B—Stop Utilization Modification: Review of bus ridership data
showed that the bus stops on 58 percent of the runs pass this intersection
during the P.M. peak hour. For this reason, it was assumed the bus would
stop at the nearside location and the distance was set to 40 feet down-
stream of the stop.

• Rule 3—Traffic Signal Distance: The distance to the nearest upstream
traffic signal is not a factor at this intersection.

Table 3 summarizes the case study example in a tabular format.

Conclusions
Signal priority offers the promise to improve schedule reliability and reduce

travel time through traffic signals. However, the complexities of bus operations
suggest that more sophisticated decision logic will be necessary to achieve all the
benefits of signal priority. The use of the AVL system in conjunction with the sig-
nal priority reduces the number of requests to the traffic signal, thereby reducing
the effectiveness of the system, and requires an iterative approach to scheduling.
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AVL also promises to make the use of the emitter more selective depending on
the status of the bus and boarding and alighting passengers. Further, measures
supportive of signal priority such as the relocation of bus stops to the far side of
each signalized intersection and the provision of stops at a distance upstream that
increases the allowable range for the detection system.
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Table 3
NE Sandy/33rd Avenue Intersection Tri-Met Route 12

Rule 1

Distance
Extension Between
Time (ft) Stops (ft)

Inbound (nearside) 660 485

Outbound 660 676

Rule 2

Distance from
Signal of Unstream Stop

Stp (ft) Utilization

Inbound (nearside) 109 58%

Outbound 549 69%

Rule 3
Distance Between Critical

Signal and Upstream Critical
Signal (ft) Distance (ft)

Inbound (nearside) 1,718 69
Outbound 1,928 549
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