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An Intelligent Contraflow Control Method for Real-Time Optimal Traffic
Scheduling Using Artificial Neural Network, Fuzzy Pattern Recognition, and

Optimization
D. Xue and Z. Dong

Abstract—Contraflow operation is frequently used for reducing
traffic congestion near tunnels and bridges where traffic demands
from the opposite directions vary periodically. In this work, a
generic real-time optimal contraflow control method has been
introduced. The introduced method integrates two important
functional components: 1) an intelligent system with artificial
neural network and fuzzy pattern recognition to accurately
estimate the current traffic demands and predict the coming
traffic demands, and 2) a mixed-variable, multilevel, constrained
optimization to identify the optimal control parameters. Applica-
tion of the developed method to a case study—dynamic contraflow
traffic operation at the George Massey Tunnel in Vancouver, BC,
Canada has significantly reduced traffic delay and congestion.

Index Terms—Fuzzy pattern recognition, neural network, opti-
mization, real time systems, traffic control.

I. INTRODUCTION

A. Background

T UNNELS and bridges are often bottlenecks of a traffic
system and sources of traffic congestion. The time-varying

unbalanced traffic flow during rush hours frequently imposes
heavy traffic demand on one side of the road, while showing
light traffic demand on the opposite side. A contraflow opera-
tion, which periodically switches one or more traffic lanes from
one direction to the opposite direction, is often employed to re-
duce congestion on the busy side.

Most of the presently used control methods for a contraflow
operation are static in nature. These approaches operate on a
few fixed contraflow control schedules that were generated
based upon the statistical traffic demands over certain time
periods. The mismatch between a fixed contraflow control
schedule and the dynamic varying traffic demand often leads
to poor system performance. A dynamic contraflow operation
control method, that generates the optimal control parameters
based on the real-time data, is in great need. This work focuses
on the development of such a new method.

A. Related Work

Presently many urban traffic control (UTC) systems are
used to reduce traffic delay caused by congestion through the
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effective control and coordination of traffic signals in urban
traffic networks [1], [2]. Most of these UTC systems were
developed based upon static traffic control approach using
fixed timing plans to coordinate traffic signals. With recent
advances in real-time control, instrumentation, and computer
networks, various dynamic control methods, that continuously
adjust traffic signal timing plans using the collected real-time
traffic flow data, were introduced to UTC systems [1]. Typical
adaptive UTC systems include the SCOOT system in the
United Kingdom [3], the SCATS system in Australia [4],
and a number of others [1]. In addition, many advanced soft
computing techniques, including neural networks, fuzzy logic,
and optimization, have been used in developing dynamic
traffic control systems as part of the Intelligent Transportation
Systems (ITS) [5].

However, most of the present traffic control systems are de-
veloped with very low accuracy. For instance, the traffic flow es-
timation errors caused by traffic congestion are seldom studied
and compensated. Most of these systems update their timing
plans only after a significant change in traffic flow is identified.
The lack of the capability of accurately estimating current traffic
demand and predicting future traffic demand leads to a constant
lag in the traffic control.

B. George Massey Tunnel Contraflow Control Problem

The George Massey Tunnel is a traffic bottleneck between
two suburban cities—Richmond and Delta in the greater Van-
couver area. Four lanes are in the tunnel, two for northbound
traffic and two for southbound traffic. Since more vehicles travel
in northbound toward the city center during morning traffic peak
hours, three lanes are open to the northbound traffic and one
lane to the southbound traffic. During the afternoon traffic peak
hours, on the other hand, three lanes are opened in the south-
bound direction and one in the northbound direction, to accom-
modate the large leaving-city traffic demand. Each contraflow
operation cycle consists of four steps: 1) closing the selected
contraflow lane to clear up traffic on the lane; 2) opening the
contraflow lane in the opposite direction; 3) closing the con-
traflow lane when the traffic peak hours are over; and 4) re-
opening the traffic lane to its normal state.

Previously, the contraflow traffic control operated on a
fixed schedule: one shift in the morning and another in the
afternoon during traffic peak hours with fixed starting time
and duration. To improve this static traffic control method, the
Ministry of Transportation and Highways of British Columbia
launched theoptimal responsive contraflow controlproject in
1992. During its development, a model for estimating the
traffic demand at the tunnel site using traffic flow information
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Fig. 1. A graph-based traffic demand estimation model.

near the tunnel was proposed [6]. Eleven traffic counters
were then installed on the major roads near the tunnel to
acquire traffic flow data. Calculation of traffic congestion at the
tunnel site and identification of the optimal contraflow control
schedule through an off-line analysis, considering one or two
contraflow operation cycles, using an exhaustive search method
were studied [7]. A method for predicting traffic demands by
identifying the most similar historical traffic demand data
set was also proposed [7]. Further study on on-line traffic
demand estimation and analysis of collected traffic flow data
were subsequently conducted [8], [9]. Implementation of a
real-time contraflow control system was also initiated [10],
[11].

However, a number of problems arose during the project.
These can be summarized into three categories:

1) The model for estimating true current traffic demand at
the sensing time using the on-line acquired traffic flow
data was not accurate enough. The error on traffic demand
estimation at the tunnel site, including the errors caused
by congestion and insufficient traffic counters, were not
well studied and compensated.

2) The method for predicting coming traffic demands using
on-line acquired traffic data was too primitive. Historical
traffic demands were regarded as “patterns” in anad hoc
manner. Identification of the best-fit “pattern” was carried
out by matching the collected traffic data with all of pre-
stored “patterns,” leading to a time consuming process.

3) The method used for identifying the optimal contraflow
control schedule was not efficient and accurate. The
contraflow schedule optimization was simply carried
out using an exhaustive search. The approach requires
a relatively long computation time within the limited
on-line control time frame, and leaves no time for a
detailed search to achieve an accurate result.

These problems precluded the system from being used as a
practical, optimal contraflow traffic control tool. The work pre-
sented in this paper addresses these technical issues and pro-
vides a new generic approach to real-time optimal contraflow
control. Further technical details on this work can be found in
[12]. Continuous improvement and implementation of a better
user interface were also carried out at the Ministry of Trans-
portation and Highways of British Columbia since the comple-
tion of this work.

II. ESTIMATION OF CURRENT TRAFFIC DEMAND USING

FEEDFORWARDNEURAL NETWORK

A. A Multilayer Dynamic Traffic Demand Estimation Model

Traffic demand at a bottleneck point of the road network, such
as a tunnel or bridge, is normally estimated using the traffic flow
data acquired from the roads close to the troubled spot. First a
graph is derived from the physical traffic network [6], as shown
in Fig. 1. From this graph, it is apparent that the traffic demand
at the bottleneck can be calculated as or .

Two types of errors are found in traffic demand estimation: 1)
the errors caused by traffic congestion, and 2) the errors caused
by the lack of sufficient traffic counters. For instance, during
peak traffic hours, congestion may emerge near the bottleneck
site, such as locations B and C in Fig. 1. The estimated traffic de-
mand, , calculated using the traffic data acquired from these
counters, is lower than the actual traffic demand. The true traffic
demand can be better estimated byusing the counters further
away from the bottleneck site. However, the estimated traffic de-
mand, , is less accurate considering the time delay and lack
of sufficient traffic counters at all merging and exit roads. For
instance, if no counter is installed at location D (an exit road)
in Fig. 1 due to its low traffic volume and less significance, the
estimated traffic demand, , would be higher than the actual
traffic passing through the bottleneck, i.e., some artificial traffic
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Fig. 2. Traffic demands in southbound and northbound directions.

is “added” in the traffic estimation model. Similarly, for a minor
merging road some traffic might be “lost” in the traffic estima-
tion model. More frequently, these problems are caused by mal-
functioning traffic sensors or communication hardware.

A multilayer dynamic traffic demand estimation model is in-
troduced to reduce the traffic estimation errors caused by con-
gestion. In this model, all counters are organized in different
layers based upon their distances to the bottleneck site. The layer
with the traffic counters that are closer to the traffic bottleneck
has higher priority for traffic demand estimation. A congestion
is detected when the traffic demand calculated using the coun-
ters at one layer is significantly lower than the traffic demand
calculated using the counters at a further away layer. The traffic
demand will then be estimated using the next layer traffic coun-
ters. To handle the second type of traffic estimation errors, the
simple vehicle number counting mechanism is replaced by an
artificial neural network that is trained using real traffic flow
data to remember the true behavior of the traffic system. The
method will be discussed in details in the following sections.

B. Removal of Random Traffic Noise Through Least Square
Curve-Fitting

Fig. 2 shows the estimated northbound and southbound
traffic demand data in the afternoon at the George Massey
Tunnel site. These data present the trend of traffic flow change
and random noises introduced by uncontrollable factors. These
random noises have to be removed due to the following reasons:
1) the random noise hinders the interpretation of the real traffic
demand, 2) noise free traffic flow volumes serve as better
training and operation data for the artificial neural network that
is used to estimate traffic demand with incomplete data caused
by missing or malfunctioning traffic counters, and 3) both
computation efficiency and reliability can be improved in the
process of contraflow schedule optimization using a smooth
traffic demand curve without many meaningless local minima
caused by random noise.

In this work, a least-square curve-fitting method is
used to eliminate the high frequency noise. Suppose,

are obtained traffic demand data
points at time , and the th polynomial curve is
represented as

(1)

where are coefficients, the least-square curve-
fitting scheme is used to obtain these coefficients of theth
polynomial by

(2)

The coefficients are calculated using

(3)

where is a by matrix. The element at th row
and th column in matrix is defined as

(4)

and is defined as

(5)

To balance the quality of the curve-fitting and the computa-
tion efficiency, a tenth polynomial is used. The mathematical
models of traffic demand are illustrated by the smooth curves of
the dashed lines shown in Fig. 2.
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C. A Multilayer Feedforward Neural-Network-Based Traffic
Demand Estimation Model

A multilayer feedforward artificial neural network, that is
trained using the backpropagation algorithm, is an effective
tool for modeling nonlinear relations among massive input
and output data when the mathematical relations among these
input and output parameters cannot be easily formulated
[13]. In this work, a three-layer feedforward neural network,
as shown in Fig. 3, is used for estimating traffic demand
with possible missing or malfunctioning traffic counters. The
neural network consists of nodes at three layers: an input
layer with input nodes, a hidden layer withhidden nodes,
and an output layer with one output node. The nodes at
two adjacent layers are connected by arcs with weights

and .
This neural network is first trained to formulate the input and
output relations, and then used to estimate traffic demands for
given input traffic data.

Training of the feedforward neural network is carried out
through adjusting the weights of connection arcs by a backprop-
agation algorithm using a collection of correct input–output data
sets. The traffic demand estimation neural network is trained
through the following steps.

1) Normalize the sample correct data sets as input–output
data sets for the neural network. Suppose,

is the sensed traffic flow
of the th traffic counter in the th data set, this measure
is transformed into an input data using

(6)

where
upper bound value of theth traffic flow data;
lower bound value of theth traffic flow data;
upper bound value of theth normalized
input;
lower bound value of the th normalized
input.

The output, , can be transformed
into a normalized measure, , using the same method.
In this work, the normalized lower and upper bound
values of an input node are selected as−5 and 5; and the
normalized lower and upper bound values of an output
node are selected as 0.05 and 0.9, respectively.

2) Assign random values in the range of [−1, 1] to all the
connections and , threshold values of all the hidden
nodes , and threshold value of the
output node .

3) For each normalized correct data set
;

a) Calculate the values of the hidden nodes using

(7)

Fig. 3. A three-layer feedforward neural network for traffic demand
estimation.

where is the sigmoid function
.

b) Calculate the value of the output node using

(8)

c) Compute the error at output node using

(9)

d) Compute the error of each node in the hidden node
layer using

(10)

e) Adjust the connections from the hidden nodes to
output node by

(11)

where is a learning rate selected as 1.0.
f) Adjust the connections from the input nodes to the

hidden nodes by

(12)
where is learning rate selected as 1.0.

4) Repeat Step 3) until the sum of errors regarding all the
normalized correct data sets defined by

(13)

is less than a specified small number.
In the real-time traffic demand estimation using the artificial

neural network, traffic flow data collected from the major roads
near the bottleneck site are first transformed into the normalized
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Fig. 4. Traffic demand prediction by pattern matching.

input data using (6). These normalized input data are presented
to the trained neural network to calculate the normalized output
using (7) and (8). The normalized output is then transformed
back into traffic demand using the relation defined in (6).

III. PREDICTION OFCOMING TRAFFIC DEMANDS USING A

HIERARCHICAL PATTERN RECOGNITION APPROACH

A. A Pattern-Based Traffic Demand Prediction Model

Thepresentandpasttraffic demand can be estimated directly
using the collected traffic flow data. To identify the optimal con-
traflow control schedule, one also needs to predict thecoming
traffic demand in advance. In this research, a pattern matching
approach is employed to predict the coming traffic demands, as
illustrated in Fig. 4.

In this approach, historical traffic demand data during a
specific time period are classified into representative pat-
terns. Each pattern is described by a-dimensional vector

. The presently
collected actual traffic demand data are represented by

, . This partial traffic demand
vector is then compared with all stored traffic patterns by
calculating its distances to these patterns using

(14)

The traffic pattern that has the minimum distance to the on-line
acquired traffic demand vector over the available vector ele-
ments is identified as the best-fit traffic flow pattern . The
following elements of the identified best-fit traffic flow pattern
are then used as the predicted coming traffic demands. The com-
plete traffic demand vector is thus represented as

(15)

B. Fuzzy Pattern Clustering

In this work, representative traffic flow patterns are identi-
fied using the fuzzy c-means clustering method [14]. In the

fuzzy set theory, the relationship between an element and a set
is described by a membership function in the range of [0, 1],
rather than a simple “in” or “out” relation as in the classical set
theory. Each of the previously collected data sets is described
by a -dimensional vector,

. Suppose the number of representative traffic pat-
terns, or cluster number, is, a total of traffic patterns can then
be formed using the fuzzy c-means clustering algorithm through
the following steps.

1) Initialize the membership of for cluster
such that

(16)

2) Compute the fuzzy centroid vector for
using

(17)

where the fuzziness index is a real number greater than
one.

3) Update the fuzzy membership by

(18)

where

(19)

4) Calculate

(20)
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Fig. 5. Hierarchical pattern representation and matching.

Fig. 6. Traffic demands and capacities at the tunnel site.

Steps 2)–4) are repeated continuously until the value of
reaches a minimum. Thefinal vectors are then the patterns
to be achieved.

C. Identification of the Optimal Pattern Number

An increase of the cluster number leads to a more accurate
classification. However, a large number of clusters also needs
more computation time during the identification of the best-fit
pattern in real-time control. To balance these two contradict as-
pects, a method for identifying the optimal number of patterns
is introduced.

The quality of a pattern clustering is evaluated using a newly
introduced measure calledcluster concentration levelthat repre-
sents the average distance of the data points to their pattern cen-
ters. Suppose the distance between a-dimensional data point

and its pattern center is calculated by

(21)

Thecluster concentration level is defined as

(22)

where
number of data points of theth cluster;
number of all data points;
cluster number.

The cluster concentration level decreases when the pattern
number increases. The relative decrease of the pattern concen-
tration levels is calculated by

(23)

The optimal pattern number is identified when reaches
its maximum.

D. Hierarchical Representation of Traffic Patterns

When the number of traffic patterns is large, it is inefficient to
check all the patterns preserved at the same level for identifying
the best-fit pattern. In this work, a hierarchical pattern represen-
tation method is introduced to improve pattern matching effi-
ciency. In this method, all traffic data are first classified into a
number of top-level patterns. If the number of data points in a
pattern cluster is still large, a further classification is carried out,
as illustrated in Fig. 5. Each pattern is described by its pattern
center, . The top level pattern clusters are linked together by
a special root node.

The best matched pattern can be identified efficiently using a
search through the illustrated clustering tree. Starting from the
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TABLE I
TRAFFIC CONGESTIONQUEUE LENGTH AT TIME t

root node, the best matched subnode is identified using (14). The
search process is carried out continuously until the best pattern
at the bottom level is identified, as illustrated by the dark line in
Fig. 5.

IV. I DENTIFICATION OF THE OPTIMAL CONTRAFLOW

SCHEDULE USING MULTILEVEL CONSTRAINEDOPTIMIZATION

The objective of contraflow control is to identify the optimal
control parameters to minimize traffic delay at the traffic bottle-
neck. Different from a conventional optimization problem, both
continuous and discrete variables are used in contraflow control,
and the number of variables is also a variant.

A contraflow control schedule is described by the number
of contraflow shifts and timing parameters in each shift. Since
four steps are needed to complete a shift, the schedule of a
shift is represented using four parameters

.
Traffic delay at the bottleneck is calculated based on the dif-

ference between traffic demand and traffic capacity, as intro-
duced in [7]. The traffic demands and capacities at the George
Massey Tunnel in the afternoon, under one-shift and two-shift
control schedules, are illustrated in Fig. 6. Since the traffic ca-
pacity at a certain timeis a function of the contraflow schedule

, traffic delay at time is also a function of the contraflow con-
trol schedule. Suppose and are traffic demands in
southbound and northbound directions at time, and
and are the capacities in southbound and northbound
directions at time , the total traffic delay queue length
during the time period [ , ] can be calculated by

(24)

where and are the traffic delay queue length
measures at timein southbound and northbound directions, re-
spectively. Their values are calculated using the equations given
in Table I [7].

The optimization problem for a-shift schedule is thus
formulated as

subject to

(25)

where is the shift change-over time, a time between the close
of a lane for clearing up traffic and the opening of this lane to

traffic from the opposite direction. If the optimal schedule for a
n-shift contraflow control is described as , the final optimal
contraflow schedule, , considering all possible shift numbers
is achieved by

(26)

V. A CASE STUDY: GEORGEMASSEY TUNNEL CONTRAFLOW

CONTROL

A. Implementation of the George Massey Tunnel Contraflow
Control System

The prototype George Massey Tunnel contraflow control
system was developed based upon the introduced methods and
implemented using C++ on a personal computer. The system
and its user interface has been continuously improved by
the BC Ministry of Transportation and Highways since then.
On-line operation of the improved system at the George Massey
Tunnel started in 1996 and achieved an excellent performance.

Traffic flow data are collected using 11 magnetic inductive
loop traffic counters from the highway and the merging/exit
roads near the tunnel. Each counter has six channels to record
traffic flow data on different lanes. The 11 counters and their
channels are labeled using counter numbers and channel index
letters from A–F. The collected traffic data are sent to a central
computer using modems and telephone lines.

The traffic network graphs for estimating current traffic de-
mands are constructed based upon the layout of the road net-
work. Fig. 7(a) shows the traffic network for southbound traffic
demand estimation. These traffic counters are organized into
three layers, for estimating southbound traffic demand using the
equations given in Table II. The estimated traffic demands in the
afternoon are shown in Fig. 2. Traffic demand estimation errors
caused by congestion are eliminated by the multilayer dynamic
traffic demand estimation model, where the threshold to detect
the traffic congestion by comparing the traffic demands calcu-
lated with two neighboring layer traffic counters is set as 5%.
Added or lost traffic is detected when the third layer counters
are used. This error is compensated using a feedforward neural
network, as shown in Fig. 7(b). In this research, 80 sampled
data sets were used in training the neural network. The errors
have been reduced from an average of 7% to less than 1%. The
neural-network model was not implemented in the early version
of the contraflow control system. Instead, the traffic loss com-
pensation was carried out simply by multiplying a constant com-
pensation factor, considering the relative traffic loss remains a
constant.

The coming traffic demands at the tunnel site are achieved
using the pattern matching method. Historical traffic flow data
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Fig. 7. Models for estimating traffic demand in southbound direction.

TABLE II
TRAFFIC DEMAND ESTIMATION MODELSUSING THETHREELAYER COUNTERS

are organized into two groups: 1) Mondays to Thursdays and
2) Fridays. These data are further clustered into nine and ten
patterns, respectively. Each pattern is described by a vector with
85 elements, representing a sequence of vehicle counts from
4:00–11:00 a.m. and 1:00–8:00 p.m., respectively, with a 5-min
interval.

The optimal contraflow schedule, consisting of the number
of contraflow shifts and the timing parameters of each shift,
is identified using the multilevel constrained optimization.
Presently, only one-shift and two-shift control schedules are
considered. The change-over time is 10 min. The optimal
contraflow control is activated between 5:30–10:30 a.m. and
3:00–8:00 p.m. The n-shift optimal contraflow control problem
is solved using a derivative-based constrained optimization
method considering computation efficiency for on-line opera-
tion and accuracy [15]. The system updates the on-line optimal
schedule every 5 min through the active control period.

B. Evaluation of the George Massey Tunnel Contraflow
Control System

The advantage of the proposed system can be illustrated by
a comparison of the total traffic delay caused by three rele-
vant contraflow control schemes, including: 1) the conventional
fixed-time, one-shift contraflow control operation; 2) the pre-
sented real-time, optimal contraflow control method; and 3) the
ideal optimal contraflow control schedule. Among these, the
ideal optimal contraflow control schedule is obtained through

TABLE III
TOTAL TRAFFIC DELAYS OF DIFFERENTCONTRAFLOW CONTROL SCHEMES

an off-line contraflow control optimization using traffic data ac-
quired directly from the tunnel site after the traffic has passed
by. It has no engineering significance other than showing the
potential of contraflow operation because it can only be carried
out afterwards. The results of comparison is given in Table III.
Although the presented real-time optimal contraflow control
method can be further improved in principle, it does provide a
significant improvement over the conventional fixed-time one-
shift contraflow control method (around 34%).

VI. SUMMARY

A generic real-time optimal contraflow control method was
introduced in this research to reduce congestion at traffic bot-
tleneck sites. The current traffic demand at the bottleneck site is
estimated using the nearby real-time traffic flow data collected
by traffic counters. The demand estimation errors caused by
congestion are compensated by a multilayer dynamic demand
estimation model. The demand estimation errors caused by in-
sufficient or malfunctioning traffic counters are compensated
by a feedforward neural network. The coming traffic demand
data are predicted by matching the collected traffic demand data
with the traffic patterns that were achieved using fuzzy pattern
clustering method. The optimal contraflow control schedule, in-
cluding the shift number and timing parameters in each shift,
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is identified using a mixed-variable multilevel constrained opti-
mization approach. The George Massey Tunnel contraflow con-
trol system, developed based upon the introduced method, has
reduced the congestion considerably near the tunnel site.
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