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INTRODUCTION

Delay is the most important measure of effectiveness (MOE) at a signalized intersection
because it relates to the amount of lost travel time, fuel consumption, and the frustration and
discomfort of drivers. Delay also can compare the performances of an intersection under
different control, demand and operating conditions. The accurate prediction of delay is,
therefore, very important, but its accurate estimation is difficult due to random traffic flows and
other uncontrollable factors.

Delay can be estimated by measurement in the field, smulation, and analytical models.
Of these methods, analytical estimation is the most practical and convenient. In estimating of
delay at signalized intersections, a number of analytical models have been proposed and
devel oped using different assumptions for various traffic conditions.

Many stochastic steady-state delay models use the assumptions that arrivals are random
and departure headways are uniform, but these assumptions are generally unrealistic. Stochastic
steady-state delay models are applicable only for under-saturated conditions and they predict
infinite delay when arrival flows approach capacity. Deterministic models are more realistic for
predicting delay for over-saturated conditions, but these models ignore the effect of randomness
in traffic flow.

Time dependent delay models have been developed to overcome the deficiencies in both
stochastic steady state and deterministic delay models. These models combine the stochastic
steady state and deterministic models using the co-ordinate transformation technique. They
provide more realistic delay models.

There are three different time dependent delay models (Australian, Canadian and the
Highway Capacity Manual (H.C.M.)) commonly used to estimate delay at signalized
intersections. There is a delay parameter k in all of these models that is fixed but this k
parameter and does not account for the effects of variable traffic demands and variable time
periods of analysis.

This paper develops time dependent delay models for the estimation of delay at
signalized intersections for variable demand and time conditions. The delay parameter k. in
these modelsis afunction of degree of saturation and analysis time period.

BACKGROUND

Average total delay experienced by vehicles at an intersection controlled by a pre-timed
traffic signal consists of uniform, random overflow and continuous overflow delays. Many
analytical models with varying assumptions have been developed to estimate this traffic signal
delay. Even some of the time dependent delay models, however, have not been able to estimate



delay accurately for over-saturated conditions. This includes the H.C.M. delay model, which is
popular and widely used.

The H.C.M. delay modd yields reasonable results for under-saturated conditions but
compared to other delay models, predicts higher delays for over-saturated conditions. The
difference between the H.C.M. delay model and other delay models increases with increasing
degree of saturation. Therefore, delay estimates for higher values are not recommended. & 2"
The H.C.M. delay model was derived for atime period of 15 minutes and hence, the estimation
of delay using thismodel is limited to time periods of 15 minutes duration.

The level of delay at a signalized intersection is a function of many parameters including
the capacity, the traffic volume, the amount of green time available, the degree of saturation, the
analysis time period, and the arrival patterns of vehicles.

Time dependent delay models include a delay parameter in their overflow delay
component known as the k variable, which describes the arrival and service conditions at the
intersection. Degree of saturation (x), which isthe ratio of arrival flow to capacity, and analysis

time period (T) affect directly the delay. Therefore, the delay parameter k can be expressed as a
function of degree of saturation and analysis time period.

A Historical Perspective of Delay M odels

Over the past 40 years, many models have been developed to estimate vehicle delay at
signalized intersections. One of the first delay was Wardrop’s® delay expression developed in
1952. Wardrop assumed that vehicles enter the intersection with uniform arrivals. In this
model, Wardrop reported that the term 1/2s is generally small compared with r and can be
neglected. The Wardrop’s expression is expressed as:
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where

average delay per vehicle in sec,

the effective red time in sec,

saturation flow on the approach in vps or vph,
cycle length in sec,

flow ratio.
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Three more representative models estimate delay at signalized intersections have been
proposed by Webster @, Miller ® and Newell ©, while Hutchinson, ? Sosin ® and Cronje ©
have numerically compared these delay expressions.

The model developed by Webster ¥ in 1958 is the basic delay model for signalized
intersections. Webster assumes that arrivals are random and departure headways are uniform,
and his expression is as follows:
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where
A = greenratio,
X = degree of saturation,
q = flow ratein vph.

The first two terms in the Webster's expression are theoretical while the last term is an
empirical correction factor. The first term in this expression is delay due to a uniform rate of
vehicle arrivals and departures. The second term is the random delay term, which accounts for
the effect of random arrivals. Webster found that the correction term, which is the last term in
the expression, represents between 5 and 15 percent of the total delay. For practical usage, the
correction term often is eliminated and replaced by a coefficient of 0.9 applied to the first and
second delay terms. Webster's simplified expression is:
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One of the major issues in developing delay models at signalized intersections is the
estimation of overflow delay. The difficulty of obtaining simple and easily computable formulae
for overflow delay has forced to analysts to search for approximations and boundary values. An
obvious lower boundary value of overflow delay is zero, which applies to low traffic intensities.
Miller suggested that the magnitude of the overflow delay is insignificant when the degree of
saturation is less than 0%

For an upper boundary value, Mil@found an approximation given by:
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where
g = effectivegreentimein sec.

Miller developed, in terms of the overflow, two expressions assuming that the queue on
the approach was in statistical equilibrium and the number of arrivalsin successive red and green
times were independently distributed.

Miller’s first delay expression, which incorporates the I ratio, is represented as follows:
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where:
| = variance to mean ratio of flow per cycle.

The first term in the expression gives the average uniform delay resulting from the
interruption of traffic flow by traffic signals. The second term of the expression shows the
measurement of average delay when there are vehicles left in the queue at the end of green
phase. The third term causes delay to decreaselwhéror increase whein> 1. Note that this
expression is only valid when> 0.5. Wherx is less than 0.5, the middle term in the bracket
vanishes. Miller also assumes that zero overflow is implied when the number of departures in a
cycle is less thagg.

Miller found that his and Webster’'s expression gave similar results Wiraxs almost
equal to 1, but his model gave better agreement with measured delay in the fieltl wdnen
greater than . Miller's second delay expression is given by:
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Newell studied general arrival and departure distributions for delay models at signalized
intersections. He expressed that the average delay experienced by vehicles as:
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Wherel is the variance to mean ratio of arrivals anduidi¢ a function given by the following
equation:
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The function of H (1) was obtained by numerical integration that ranges between 1 at 1 =
Oto0.25at p =1.

Cronje © proposed an alternative approximation for H (), which is expressed as follows:
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Where:
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By comparing the results with Webster's expression, Newell introduced another
supplementary correction term to improve the results for medium traffic intensities, and his
expression took final form as:
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Hutchinson” modified Webster's simplified expression by introducing the variable
Hence, Webster's simplified expression presented in Equation (2-12) is a special case of
Equation (2-3) whehequals 1. The expression modified by Hutchinson is as follows:

g= QHCA-A)® X E (12)
10H2(1-4x)  2q(1-X)

Hutchinson’s analysis for these models showed that Webster's simplified expression
underestimates delay whens greater than 1 and the degree of saturation is high. He also
pointed out that Webster's expression modified to includd theriable is a good alternative
model to estimate stochastic delay because of its algebraic simplicity.

Van As ™ performed a study using a macroscopic simulation techniques based on the
principles on Markov chains to evaluate Miller's, Newell's and Hutchinson’s modifications of
Webster's delay expressions. The results showed that Miller's and Newell's models do not
significantly improve the estimation of delay by reason of their complexity. On the other hand,



Hutchinson’s modification of Webster's delay expression performed well and provided a
significant improvement in estimating delay.

Van As also developed a semi-empirical formula to transform the variance to mean ratio
of arrivalsl,into the variance to mean ratio of departuggsvhich is applied to Hutchinson’s
modification of Webster's delay expression.  This semi-empirical formula is expressed as
follows:

I, =1, exp(-1.3F*%") (13)

where
lg

la

variance to mean ratio of departures,
variance to mean ratio of arrivals.

with the factorF given by:
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where
Qo = average overflow queue in vehicles.

Tarko et af? investigated overflow delay at a signalized intersection approach
influenced by an upstream signal. In this study two overflow delay model forms, with variance
to mean ratio of upstream departures and capacity differential between intersections, were
evaluated using a cycle by cycle simulation model developed by Rodphail.

This study showed that random overflow delay approaches zero when the upstream
capacity is less or equal to the capacity at the downstream intersection. They also found that the
variance to mean ratiocomes close to zero when the upstream approach is close to saturation.
Therefore, Tarko et al. concluded that the upstream signal impact is not appropriately
represented by the variance to mean fatio

For this reason, the variance to mean rati@s dropped from the steady state model and
they proposed an overflow delay model in termsf,ofvhich is a function of the capacity
differential between the upstream and downstream intersections. In the proposed overflow delay
model,f is also a function of a delay parameterThe details of these parameters are presented
later in chapter 4 in a section describing the Tarko-Rouglvaitiable.



Some studies have been performed based on the statistical digtributions. Brillen and Wu
9 developed a new approach using Markov chain to estimate delay at signalized intersections
under Poisson and non-Poisson conditions. Cronje ™ also considered traffic flow at signalized
intersection as a Markov process and derived delay models for undersaturated and oversaturated
conditions.

Heidemann ™ and Olszewski *” used probability distribution functions to estimate delay
at signalized intersections. In both models, the probability distributions of delay were obtained
from the probabilities of queue lengths.

TIME DEPENDENT DELAY MODELS

Analytical models for the estimation of delay at signalized intersections have three delay
components, uniform delay, random overflow delay and continuous overflow delay.

Uniform Delay

For uniform delay randomness in the arrivals is ignored as a constant arrival rate is
assumed. The discharge rate varies from zero to saturation flow according to the following
conditions; ®

* Zeroduring thered interval,

» The saturation flow rate during the part of green when there is a queue,

* Thearrival rate during the part of green when there is no queue.

For a degree of saturation less than 1.0 the expression for uniform delay is given by the
first term in Webster’s equation (2).

For over-saturated conditions the uniform delay is given by:

d, =0.5(C - g) (15)

Random Overflow Delay

Actual vehicle arrivals vary in a random mariffeand this randomness causes overflows
in some signal cycles. If this persists for a long time period then the over-saturated conditions
lead to continuous overflow delay. Akcélk expressed the overflow delay component as a
function of average overflow queue. The effect of the overflow depends on the degree of
saturation over a given time period.



Continuous Overflow Delay

Continuous overflow delay is the delay experienced by vehicles which are unable to
discharge within the signal cycle because the arrival flow is greater than capacity. Continuous
overflow delay is directly proportional to the time period for analysis T and the degree of
saturation. Continuous overflow delay is also called “deterministic overflow delay” or
“deterministic delay” due to its deterministic queuing concept. The deterministic model assumes
a constant arrival rate and capacity, which is determined by the fixed time operation of a signal.
The model presumes that the queue length at the beginning of the analysis period is zero and
increases linearly to until the end of the analysis time period.

The deterministic or continuous overflow model is a key predictor for estimation of the
delay and the queue under highly congested conditions, but it is not an appropriate model for
lightly congested conditiorf&2"

Time Dependent Delay M odels

Time dependent delay models fill more realistic results in estimating delay at signalized
intersections. They are derived as a mix of the steady state and the deterministic models by
using the coordinate transformation technique described by Kimber and ‘®éflis. The
technique was originally developed by P.D. Whiting to derive the random delay expression for
TRANSYT computer progra

The coordinate transformation is applied to the steady state curve, and smoothes it into a
deterministic line by making the steady state curve asymptotic to the deterministi¢?*fifie.
Thus, time dependent delay models predict delay for both undersaturated and oversaturated
conditions without having any discontinuity at the degree of saturation 1.0.

Australian Delay M odel

The Australian delay model, which was derived by Akcéfik) is an approximation to
Miller's delay model. The Australian delay model predicts zero overflow delay for low degrees
of saturation before the overflow delay term is applied. The value of the minimum degree of
saturation depends on capacity per cycle and is given a sygnbhe Australian delay model is
expressed as follows:
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where

d = averageoverall delay,
C = cycletime (sec),
A =
X

= degree of saturation,
c = capacity (vph),
Xo = degree of saturation below which the second term delay is zero,
sg = capacity per cycle (vehicle/cycle).

Canadian Delay M odél

The Canadian delay model derived by Whiting is commonly used to predict delay at
signalized intersections.®® The model , like other time dependent delay models, consists of two
terms that have uniform and overflow delay terms. The Australian and Canadian delay models

have a similar formulation, but different coefficients in the overflow delay term. The original
form of the Canadian delay model is stated as follows:

_Ccl-Ay 150G ~ v . 240v0
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where

te = evauation time (minutes),
v = arriva flow rate.

After some manipulation, the Canadian Delay model is expressed as:
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1985 H.C.M. Delay Model

The H.C.M."*? uses stopped delay instead of overall delay to determine the level of
service at signalized intersections. The model has a uniform delay term and an overflow delay
term called the incremental delay term. Unlike the Australian and Canadian delay models, the
H.C.M. assumes afixed analysis time period of 15 minutes regardless of the actual congestion
period. The coefficients of the uniform and incremental terms differ from other time dependent
delay models due to the conversion factor and the fixed analysis period of 15 minutes.

Another difference of the 1985 H.C.M. delay model from the Australian and Canadian
delay models is the x? (n = 2) calibration term. The H.C.M. uses a calibration term to obtain

better results in estimating delay for under-saturated conditions. The H.C.M. delay model



overestimates delay at high degrees of saturation because of the calibration term in the
incremental delay component of the model.

The 1985 H.C.M. dedlay model, with its uniform and incremental components, is
expressed as follows:

_) 0
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ds = average stopped delay.

where

1994 H.C.M. Delay Model
In 1994, the Trangportation Research Board released the latest version of the Highway

Capacity Manual.” which made significant changes to their model. These have been have been
discussed by Panesdovus et al. @” and Strong. ®®  The new delay model is represented as:

_ c-2y 2B ) J(x—1)+ ™E
ds_0'38{1—/\[Min(x,1.0)]}+173X DX 1)+ (x 1)+ s E (21

where
m = anincremental calibration term representing the effect of arrival type and.
degree of platooning.

Akcelik’s Alternative Delay Model

Akcelik ) proposed an alternative to the H.C.M. model. His model gives delay values
close to the H.C.M. delay model when the degree of saturation is less than 1.0, and remains
asympotic to the deterministic over-saturation line for x values greater than 1.0.

Akcelik’s alternative model does not incorporate?acalibration term and the second
delay term is set to zero when the degree of saturation is below 0.5. Also the delay p&rsmeter
equal to 1.0 in alternative model and 0.5 in the H.C.M. delay model. The alternative model for
the 15 minutes fixed analysis period is expressed as:
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When applying the conversion factor to the alternative model, Equation (20) becomes:
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Akcelik's Generalized Delay Model

Akcelik notes that existing time dependent delay models have more or less the same
form. They can be considered as variations of one another, and expressed in ageneral form. A
generalized time dependent delay model is proposed by Akcelik 39  as follows:
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and

X, = a+bsg (25)

where
m, n,a, b = calibration parameters,
sg = capacity per cycle.

The Australian, Canadian, 1985 H.C.M., 1994 H.C.M, TRANSTY 8 and Akcelik’s
alternative delay model can be derived from Equations (24) and (25) by setting appropriate
values for the calibration parameters n, m, a, and b.



Burrow’s Generalized Delay Model
Burrow Y presented a more general form of the Akcelik’s generalized delay model. It
covered the work by Kimber and Hollis. His generalized form included an additional term alpha
in the over-saturation part of the equation.

d=0.5M+900Tx”ﬁx—1)+a+\/(x—1)2+m(x—+ﬁ)g (26)
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where
m, n,a, = calibration terms.

Appropriate values for the calibration terms marandf3 give the Australian, Canadian,
H.C.M., TRANSTY 8, Alternative to H.C.M. and TRRL delay models. The Australian and
TRRL delay models have non-zero values for the @rmrThe unique property of the TRRL
model is that it contains a non-zero valuexoflhe terma is a function ofy which was used for
C in the Kimber and Hollis notation to avoid confusion with C, the cycle time. The pargmeter
describes the arrival and departure patterns of traffic on the approach and it is the same as the
delay parametek in other time dependent delay models.

Suggested Calibration Term for H.C.M. Delay M odéel

A calibration termx* was introduced to the 1985 H.C.M delay model to reduce predicted
delays in under-saturated conditions. To achieve this, a non-linear calibration term was desired
and thex? parabolic function was selected. Because of the non linearity in x, the basic
coordinate transformation equation presented by Kimber and Hollis could not be easily adjusted
internally to its model formf3?

The calibration ternx* works very well for under-saturated conditions but it overestimates
delay at high degrees of saturation. Because of the parabolic property &ffihetion the
H.C.M. model diverges from the deterministic line for x values above 1.0. This divergence is
contrary to the basic time dependent delay model, which forces the delay curve to be asymptotic
to deterministic line.

This paper proposes non-linear function to replace the calibrationteenetter describe
delay at high degrees of saturation and to improve the estimation of delay for under-saturated
conditions. An appropriate curve for the calibration term is obtained from the combination of
exponential and parabolic functions. Theses functions alone cannot perform the aim revealed
above. The suggested calibration tefrfok the H.C.M. delay model is given in Equation (27).
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The comparison of the calibration terms x* and X" indicated that the proposed x" term
works well for both under-saturated and over-saturated conditions.

DEVELOPMENT OF TIME DEPENDENT DELAY MODELS
FOR VARIABLE DEMAND AND TIME CONDITIONS

Arrival and service characteristics at a signalized intersection determine the level of delay
and queuing on the approach. For the time dependent delay models, the arrival and service
characteristics are described by a delay parameter k. The analytical equations developed for
estimating this delay parameter k are obtained by using queuing analysis methods or ssmulation
models. This paper develops two different forms of the delay parameter k, which are functions
of degree of saturation x and analysistime period T, using simulation model TRAF-NETSIM.

Akcelik’'s Delay Parmeter

Akcelik and Rouphail,®*** used a cycle by cycle simulation model to develop an
expression for the delay parameter k as a function of capacity per cycle. Two delay parameters k
and xo were derived for random and platoon arrivals using the steady state delay model given in
Equation (28). Then, by using a coordinate transformation technique these two delay parameters
were applied to the time dependent delay model presented in Equation (29).

0, = k(x—x,) 29)
QfL-x)
where
ds = stochastic steady state delay in sec,
Q = capacity vph.
-x.) O
d, = 900T x—1)+\/(x—1)2+MD (29)
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for x > xo (zero otherwise)
where
d> = overflow delay term of the time dependent delay model.

The expression k developed by Akcelik and Rouphail incorporates the ratio of variance-
to-mean arrivals per cycle |, at the upstream approach. For random arrivals |, equals 1 and the
delay parameter k is given by:

k =1.2259 7% (30)



This expression is applied only when the degree of saturation x is greater than 0.5, and

the k values in Equation (30) range from 1 to 0.5 for sg values in the range of 3 to 60 vehicles
per cycle.

For platooned arrivals, the delay parameter kis not only a function of capacity per cycle
but also a function of the magnitude of the platooning and the cycle to cycle variation in the
arriving stream.  The magnitude of platooning, PIP, is equivalent to the proportion of vehicles
stopped at the upstream intersection and is given by:

PIP = c forx, <1.0
39,0
o C 'O
(31)
1.0 forx, >1.0
Then, the delay parameter k for platooned arrivalsis expressed as follows:
k = (1.22-0.527PIP) (sg) ** forx, =0.5
(32)
0.302 i}
k= 022 forx, >0.5
1-PIP (0) °

Tarko/ Rouphail / Akcelik's Delay Parameter

Tarko et al. ™ developed a model using the difference in between the upstream and
downstream intersection capacities to describe the delay parameter k. The random overflow

delay approaches zero when the capacity is less or equal to the capacity at the downstream
intersection. The modd is presented in Equation (33).



k=Kk,f (33
where
model parameter for an isolated intersection,

The adjustment factor for upstream conditions as afunction of the difference
between the upstream and downstream capacities.

ko
f

The f term in the model is expressed as follows:

f=1 when (s9), >>(s9)4

0<f<l when  (s),>(s9), (34)

f=0 when (s9), <(s9)q

where
>> = much greater than,
(sg)u = the upstream capacity in vehicles per cycle,
(sg)a = the upstream capacity in vehicles per cycle.

After calibration, the final form of the delay parameter k is:

k = 0.408{1— e‘0-5[(99)u‘(39)d]} (35)

The calibrated delay parameter k istrue for (sg)y > (sg)s and x > (sg)q / 100. When these
conditions are not met, the delay parameter k becomes zero. While Equation (36) represents the
stochastic steady state form of a delay model for the developed delay parameter k, Equation (37)
presents time dependent form of the model.

0.408%1 — e 0sla)-(a)l Y, _ SO
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In the Equation (37), m. is substituted for (sg),, and defined as maximum number of
arrivals per cycle.
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Daniel’s Delay Parameter

Daniel ®* presented a model for the three signal controller types to express the delay
parameter k at signalized intersections. She calibrated the delay parameter k by setting an
estimate of the measured incremental delay to the time dependent model and solving for k. The
delay parameter k was expressed as a function of degree of saturation, and an exponential
equation was used. Her model for three controller typesis presented in Equation (38).

k = efox (38)

The results of her study show that the delay parameter k for pre-timed control has the
highest values, ranging between 0.39 and 0.02, when the degree of saturation varies from 0.5 to
1.0. The delay parameter k for semi-actuated and fully-actuated control ranges from 0.197 to
0.005 and from 0.313 to 0.016 respectively.

To minimize the effect of the large k values a low and high degrees of saturation, the
delay parameter k was developed only under traffic conditions for degrees of saturation x
between 0.5 and 1.0.

The methodology for developing the delay parameters for time dependent delay modelsin
thisresearch, expands upon Daniel's methodology.

Development of the Model for Variable Demands

Various methodologies for dealing with variable demands have been performed by Akcelik
(3430 and Ceder et %%  The approach taken in this paper was to define variable demand as
given variations over time of degree of saturak@md to model this with the simulation TRAF-
NETSIM.

The intersection simulated consisted of one lane for every approach. To avoid the effect
of spillback, the link lengths of the intersection were set to the maximum lengths allowable in the
simulation.  Queue spillback still occurred at degrees of saturation was between 1.3 and 1.5.
The intersection was considered as a micro node to take account of the effects of spillback on
total delay. Turning and pedestrian traffic were excluded from the simulation to eliminate mixed
effects.

The intersection was operated with a cycle length of 90 seconds and two phases. The
yellow and all red intervals were 3 and 2 seconds for all approaches respectively, displayed
green times were 50 seconds for the major and 30 seconds for the minor approaches. A start-up
lost time of 2 seconds, a mean discharge headway of 2 seconds per vehicle (saturation flow rate
of 1800 vphpl) and a free flow speed of 30 mph were used in the simulation runs.



Entry link volumes varied from 60 vph to 900 vph for the minor approaches and from
100 vph to 1500 vph for the major approaches. Thus, the degree of saturation ranged between 0.1
and 1.5 for both the major and minor approaches of the intersection. The percentage of trucks
and carpoolsfor all linkswas given as 5 % and 0% respectively.

In the initial experiment, the duration of the each ssimulation run was 15 minutes and for
each entry link volume, 10 simulation runs with different random seed numbers were made. The
random seed numbers were not varied from one degree of saturation to the other, and kept
constant during multiple runsto obtain identical traffic movements.

When the degree of saturation x was less than 0.5 and greater than 1.0, the variation in k
values was so great that supplementary simulation runs were made to obtain a significant amount
of data. Thus, atotal of 182 simulation runs were made to develop a delay model that is suitable
for variable demand conditions.

Development of Delay Parameter k

Time dependent delay models consist of the two delay components for uniform and
overflow delay. The uniform delay is the first term of Webster Equation (2) for under-saturated
conditions and from Equation (15) for over-saturated conditions. These equations perfectly
estimate uniform delay, so there was no further examination of the uniform delay term.

The overflow delay term represents the additional delay that results from temporary and
persistent over-saturation conditions. It becomes a combination of the random overflow and the
continuous overflow delay terms.  While random overflow delay may occur at all degrees of
saturation, continuous overflow delay solely occurs when the degree of saturation is greater than
1. For this reason, the random overflow delay is a core term to model the delay parameter k.
Figure 1 graphically illustrates these delay terms.

d=d, +d, (39)
Where
d = average overall delay,
du = uniform delay,
do = overflow delay.

dO = dro + dCO (40)
where
d o = random overflow delay,
d . = continuous overflow delay.
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Figurel A General Delay Function for Delay Components 9



For under-saturated conditions continuous overflow delay is zero and the
simulated delay equals the sum of the uniform and random overflow delays. Estimate of
random overflow delay holds true only if the simulated delay is greater than the estimate
of uniform delay. When the smulated delay is less than uniform delay, that random
overflow delay is zero.

For over-saturated conditions, random overflow delay is estimated as the
difference between the simulated delay and the sum of uniform delay and continuous
overflow delay. The value of the delay parameter k for both conditions is obtained by
substituting the s mulated random overflow delay in the time dependent equation.

For this paper, the Canadian delay model was selected to solve for k for given
traffic conditions. 728 data points were obtained from the 182 simulation runs, but 94 of
these were excluded because the simulated delay was either less than the uniform delay
or the sum of the uniform delay and the continuous overflow delay.

From the simulations, the variation among the calculated k values for low and
high degrees of saturation was large because the random overflow delay is not the
dominant component at these degrees of saturation. The variation for low degrees of
saturation is greater than that for high degrees of saturation even though the random delay
associated with these degrees of saturation is small. Therefore, in the modeling of the
delay parameter k, an upper and lower boundary value was needed to minimize the effect
of large k variables. The lower and upper boundary values of delay parameter k were
selected as0 and 1.5.

In the literature, specific information for maximum and minimum boundary
values of k was not available. The Australian delay modd uses a k of 1.5, a high value
that is compensated for by the xo. Kimber and Daly “? observed queue lengths at
different sites to calculate k values. They found a maximum k of 1.5 at one of their sites.
A choice of ak of 1.5 as an upper boundary value, therefore, is a realistic assumption.
Figure 19 shows the fitted k curve after the reduction of data for the upper boundary
value of 1.5.

The k values obtained according to the simulation results gave the best fit with the
following second-degree parabolic function.

k = 0.8095x* —1.4141x +1.1335 (41

Equation (41) is simplified to:

k=08x" -1.4x+11 (42)



The k values in Equation (42) have extreme values with a value of 0.488 at x of
0.9 and a value of 0.968 at x of 0.1 for degrees of saturation between 0.1 and 1.5. The
model for the delay parameter Kk is applicable to all degrees of saturation and for variable
demand conditions.

Development of the Model for Variable Time Conditions

One of the delay parameters which determines the level of random overflow delay
is k variable. It should vary with demand, capacity and analysis time period. The
variation in the traffic flow describes either demand or capacity as well as degree of
saturation. Using a fixed k value may result in overestimation or underestimation of
overflow delay for variable demands.

The expression of k given in Equation (30) and developed by Akcelik and
Rouphail determines the level of overflow delay by considering the effect of capacity per
cycle. This expression seems to work well when degrees of saturation are greater than
0.5 and the sg values are in the range of 3 to 60 vehicles per cycle. Therefore, an
expression of k as a function of capacity was not developed. On the other hand, the
analysistime period is an essential variable for determining the level of overflow delay at
signalized intersections, but their seem to be no studies associating the delay parameter k
and with the analysistime period T.

A new form of the delay parameter k that is a function of analysis time period was
developed. The simulated intersection to develop this for k had same configurations with
the intersection used in the previous study. The analysis time period varied from 15
minutes to 1 hour and 15 runs were made for each analysis time period. In each
simulation run, a different random seed number was used to eiminate similar driver and
vehicle characteristics. They were kept constant between runs, however, to have identical
traffic movements when different analysis time periods were being compared.

Four analysis time periods of 0.25 h, 0.50 h, 0.75 h and 1.0 h were considered. A
total of 60 smulation runs were performed and atotal of 240 data points were acquired.

Development of Delay Parameter k

By following the same methodology explained above, k variables were calculated
for each analysis time period. After the all simulation runs, all k variables computed
were positive and lessthan 1.5. Thus, all datawas available for the modeling of k.

The mean values of the calculated k variables were for the analysis periods are
explained by a logarithmic and power curve. The developed models for the analysis time
periods are statistically investigated below. The models are expressed in Equations (43)
and (44).



k = 0.0545Ln(T) + 0.6915 (43)

k = 0.6923T 0% (44)

The delay parameter k in Equation (43) varied from 0.5282 for an analysis time
period of 0.05 hours to 0.6915 for an analysis time period of 1 hour. The other values of
k in Equation (44) ranged from 0.5376 to 0.6923 for the same analysis time periods.
Table 1 and Figure 3 show the relationship between analysis time periods and k values
for both equations. Note that Equation (43) and Equation (44) refer to ki and k3
respectively and these provide Model 1 and Model 2.

COMPARISON OF MODELS

The delay models, Model 1 and Model 2, developed in this paper were compared to
the H.C.M., the Australian, the Canadian, and the deterministic delay models. The
degree of saturation ranged between 0.1 and 2.0. The analysis time periods ranging from
15 minutes to 1 hour. In comparing the delay models, only the overflow delays were
considered since all of the delay models have the same expression for the uniform delay.

The overflow delays for an analysis period of 15 minutes are given in Table 2 and
shown in Figure 4. The highest delay estimate was given by Model 2 for the under-
saturated traffic condition. The Australian delay model gave lower values and predicted
zero overflow delay at x values below 0.7, because of its x o parameter. When x was at
1.0, all the models were similar with estimated overflow delays around 40 seconds.

For the over-saturated condition, Model 2 and the Canadian delay model gave
similar overflow delays. The estimated values given by Model 1 and the Australian
mode for the overflow delay were almost the same, except that the overflow estimation
of Model 1 was a little bit lower than that of the Australian mode for the degree of
saturation x between 1.1 and 1.5. When the degree of saturation was between 1.6 and
2.0, however, the Australian delay model gave higher values than Modd 1.

For the values of the degree of saturation between 1.0 and 2.0, the H.C.M delay
model predicted much higher delays than any of the others and diverged from the
deterministic line. Yet, to be asymptotic to the deterministic over-saturated line is an
important characteristic of time dependent delay models. The Australian, Canadian and
the newly developed delay models predicted overflow delays of around 460 seconds at
the degree of saturation 2.0 whereas the H.C.M. delay model estimated an overflow delay
at 1828 seconds.



Tablel. Analysis Time Periods and Developed Delay Parameters

Anaysis Time Periods (T) | K1 Values ko Vaues
0.05 0.5282 0.5376
0.10 0.5660 0.5700
0.15 0.5881 0.5899
0.20 0.6038 0.6044
0.25 0.6159 0.6159
0.30 0.6259 0.6254
0.35 0.6343 0.6336
0.40 0.6416 0.6408
0.45 0.6480 0.6472
0.50 0.6537 0.6530
0.55 0.6589 0.6582
0.60 0.6637 0.6631
0.65 0.6680 0.6676
0.70 0.6721 0.6718
0.75 0.6758 0.6757
0.80 0.6793 0.6794
0.85 0.6826 0.6829
0.90 0.6858 0.6862
0.95 0.6887 0.6893
1.00 0.6915 0.6923
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Table2. Predicted Overflow Delays (AnalysisTime Period T =0.25 h)

Degree of | Analysis

Saturation | Time Mode Model Canadian | Australian | H.C.M. Deterministic
(X) Period (T) 1 2

0.1 0.25 0.77 0.49 0.40 0.00 0.00 0.00
0.2 0.25 153 111 0.90 0.00 0.04 0.00
0.3 0.25 2.30 1.89 154 0.00 0.14 0.00
04 0.25 3.17 2.92 2.38 0.00 0.38 0.00
0.5 0.25 4.24 4.35 354 0.00 0.89 0.00
0.6 0.25 5.74 6.42 5.25 0.00 1.89 0.00
0.7 0.25 8.11 9.66 7.93 0.32 3.89 0.00
0.8 0.25 1245 | 1518 @ 12.63 554 8.08 0.00
0.9 0.25 2142 | 2548 | 21.82 16.51 17.67 0.00
10 0.25 40.25 | 44.67 | 40.25 38.75 40.25 0.00
11 0.25 7137 7447 < 70.34 72.44 85.11 45.00
12 0.25 110.18 | 111.48 108.00 112.07 155.52 90.00
13 0.25 152.46 | 152.06 # 149.12 154.19 252.02 135.00
14 0.25 196.36 | 194.37 191.82 197.45 375.97 180.00
15 0.25 24112 237.60 23533 | 241.29 529.48 | 225.00
16 0.25 286.43 | 281.35 279.28 285.48 714.96 270.00
1.7 0.25 332.12 | 325.42 | 32351 329.87 934.95 315.00
18 0.25 378.08 | 369.71 H 367.93 374.40 1192.08 | 360.00
19 0.25 424.27 | 414.15 | 412.46 419.02 1488.99 | 405.00
2.0 0.25 470.65 | 458.70 = 457.09 @ 463.72 1828.35 | 450.00
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Figure 4. Comparison of Overflow delays for an Analysis Time of 0.25 h.

With the comparison of analysis time periods of 0.50h, 0.75h and 1.0h, the H.C.M. delay
model was excluded because it used a fixed analysis time period of 0.25h. The results for the
remaining models were similar. The relative values of the overflow delay for each model and
analysis time period did not change significantly when the degree of saturation x was between
0.1 and 0.5. For all analysistime periods all the models had responses similar their response for
the analysis period of 0.25h. Examples of the comparisons for the analysis period of 1.00 h. are
givenin Table 3 and Figure 5.

DELAY MODELSFOR VARIABLE DEMAND,
TIME AND OVERSATURATED CONDITIONS

In the previous section the new delay models were compared with existing models widely
used for delay estimation at signalized intersections. The developed models showed excellent
results for a given traffic conditions, but the comparisons did not represent the performance of
the models when the demand flow profile changes. The TRAF-NETSIM simulation program
was used to verify the new models, for variable demand, time and over-saturated conditions.
The delays ssmulated by TRAF-NETSIM and the delays estimated by the analytical models were
statistically compared using linear regression analysis. The results showed that the delays
estimated by the analytical models were in close agreement with those ssimulated by TRAF-
NETSIM.



Table 3 Predicted Overflow Delaysfor an Analysis Time of 1.0 h.

Degree of ,_;l_‘inrﬁleysis

Saturation Period Modde 1| Mode 2 Canadian @ Australian Deterministic
0.1 1.00 0.77 0.55 0.40 0.00 0.00
0.2 1.00 1.53 1.25 0.90 0.00 0.00
0.3 1.00 2.32 213 154 0.00 0.00
04 1.00 3.20 331 2.39 0.00 0.00
0.5 1.00 4.30 4.96 3.59 0.00 0.00
0.6 1.00 5.87 7.40 5.36 0.00 0.00
0.7 1.00 8.47 11.39 8.27 0.32 0.00
0.8 1.00 13.65 18.94 13.87 5.79 0.00
0.9 1.00 27.44 37.18 28.03 20.29 0.00
1.0 1.00 80.50 94.72 80.50 77.50 0.00
11 1.00 215.01 224.05 213.40 216.69 180.00
12 1.00 383.21 387.77 380.44 385.66 360.00
13 1.00 559.05 560.80 555.17 561.10 540.00
14 1.00 737.42 737.04 732.39 738.66 720.00
15 1.00 916.96 914.71 910.67 917.15 900.00
16 1.00 1097.16 | 1093.13 | 1089.52 1096.12 1080.00
1.7 1.00 1277.79 | 1271.99 | 1268.68 1275.38 1260.00
1.8 1.00 1458.74 | 1451.13 | 1448.05 1454.82 1440.00
19 1.00 1639.94 | 163046 @ 1627.56 1634.38 1620.00
2.0 1.00 1821.35 | 1809.91 | 1807.17 1814.03 1800.00
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Figure 5. Comparison of Overflow delays for an Analysis Time of 1.00 h.

Scenarios Analyzed

In the validation of the models, the period of smulation of 60 minutes was divided into
three consecutive time periodsto reflect the demand variation in the traffic flow. The first period
was an initial time period and had duration of 5 minutes with a constant degree of saturation 0.7
for all cases. During this period, the intersection was initialized without transferring a queue to
the second period. The second period, which was the actual analysis period, had one of four
over-saturated traffic conditions with the degree of saturation ranging between 1.1 and 1.4, and
six time periods of analysis varying from 5 minutes to 30 minutes. The third and last period was
the dissipation period, with degrees of saturation of 0.5 and 0.7. The duration of this period
depended on the duration of the second period, as it was necessary to dissipate the queues that
had built up over the second period.



Table 4 summarizes the all simulation scenarios discussed above. Each of these
scenarios was replicated by changing the random seed numbers. Different random seed numbers
yielded different event sequences, and different delay estimates.

Table4. Simulation Scenarios

Time Periods Degreeof Saturation | Simulation Time | Number of Setups
Initialization Period 0.7 5 11=1
Analysis Period 11,12,13 and1.4 | 5, 10, 15, 20, 25, 30 46=24
Dissipation Period 0.7and05 | - 21=2

Originaly, this study planned to analyze scenarios that included a degree of saturation of
1.5, but initial results showed that queue spillback in the smulation was affecting the outputs.
This occurred for adegree of saturation of 1.4 and analysis time periods of 25-30 minutes and for
a degree of saturation of 1.5 and analysis time period between 15 minutes and 30 minutes. These
scenarios, therefore, were excluded.

Comparison of Results

In the simulation runs, average maximum delays were considered because TRAF-NETSIM
uses the path trace method for measuring individual delays from arrival to departure time, even if
the latter occurred after the end of the analysis time period. In over-saturated conditions,
additional delays occur after the end of the analysis period for vehicles that had arrived during
the analysis period and are still in the queue at the end of the analysis period. In practice, this
additional delay isignored and only the delay occurring during the analysis period is considered.
The concept of the average maximum delay is given in detail by Akcelik and Rouphail Y.

The estimated delays by the models were compared with the smulated delays. The results
are shown in Table 5 for the traffic condition 0.7-O/S-0.5, and in Table 6 for the traffic
condition 0.7-O/S-0.7. It was noted that changes in the degree of saturation during the the
disspation period had no significant effect on average maximum delays as long as these
conditions were under-saturated.

Statistical Analysis

The data obtained from simulation results for traffic conditions 0.7-O/S-0.5 and 0.7-O/S-
0.7 were grouped for a linear regression analysis. Scatterplots of predicted delay versus the
means of TRAF-NETSIM delay replications indicated a close linear relationship with most of
the data.



In the linear regression analyses, the statistical comparison was conducted with the models
as the dependent variable and the simulated output as the independent variable. Each of the
delay models developed was analyzed with and without an intercept. In the no intercept case the
regression equation was forced through zero because the delay by the mode should be zero
when simulation generates zero delay. The other case was considered in since it presents the
actual magnitude of the differences between them without effecting originality of the data.

The regression analysis results between the delay models and TRAF-NETSIM for the
intercept and no intercept cases indicated that the delays ssmulated by TRAF-NETSIM are
explained by the models’ estimates with a correlation of 99 %.

The regression analysis results were very encouraging because the constant coefficient is
not substantially different from the null, with the regression results for the intercept and no
intercept cases were almost the same for both delay models. For the cases with and without an
intercept of Model 1, the linear relations are given in Equations (45) and (46). For Model 2, the
linear relations are given by Equations (47) and (48).

Y = -0.05+0.9850X (45)
Y = 0.00+0.9847X (46)
Y =1.18 + 0.9801X (47)
Y = 0.00+0.9862X (48)

where
Y = Total delay from models developed
X = Total delay from TRAF-NETSIM.

The regression analysis results showed that the estimates of delay models presented in this
paper provide an excellent statistical fit to simulated delays with an r-square and correlation
value of 0.99 at a confidence level of 95 percent.



Table 5. Comparisons of Results for Condition 0.7 — O/S - 0.5

Analysis Time
Period (minutes)

5
10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

Degree of
Saturation (x)

1.1
1.1
1.1
1.1
1.1
1.1

1.2
1.2
1.2
1.2
1.2
1.2

1.3
1.3
1.3
1.3
1.3
1.3

14
1.4
1.4
1.4
1.4
1.4

Modell
Estimates

46.66
64.26
80.54
96.35
112.10
127.50

59.28
90.64
121.01
151.17
181.60
211.61

73.14
119.15
164.23
209.19
254.64
2990.52

87.64
148.58
208.52
268.37
328.91
388.71

Model2
Estimates

47.16
65.59
82.55
98.92
115.15
130.97

59.13
91.00
121.77
152.24
182.92
213.14

72.32
118.66
164.01
209.18
254.80
299.83

86.15
147.32
207.45
267.46
328.13
388.05

Netsim
Estimates

45.71
60.68
77.54
94.34
111.21
128.05

56.48
86.29
117.25
148.58
179.87
211.44

73.39
120.08
164.63
210.15
254.08
286.04

88.95
157.99
218.12
271.18
307.13
330.80




Table 6. Comparison of Results for the Condition 0.7 — O/S — 0.7

Analysis Time
Period (minutes)

5
10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

Degree of
Saturation (x)
1.1

11
11
11
11
11

12
12
12
12
12
12

13
13
13
13
13
13

14
14
14
14
14
14

Model 1
Estimates

46.66
64.26
80.54
96.35
112.10
127.50

59.28
90.64
121.01
151.17
181.60
211.61

73.14
119.15
164.23
209.19
254.64
2990.52

87.64
148.58
208.52
268.37
328.91
388.71

Model 2
Estimates

47.16
65.59
82.55
98.92
115.15
130.97

59.13
91.00
121.77
152.24
182.92
213.14

72.32
118.66
164.01
209.18
254.80
299.83

86.15
147.32
207.45
267.46
328.13
388.05

Netsim
Estimates

46.68
62.14
79.72
96.83
114.24
131.53

58.9
90.19
122.61
155.17
187.95
221.15

77.42
126.23
173.57
222.81
268.93
300.98

97.49
167.39
232.26
290.29
324.89
348.74




CONCLUSIONS

Estimation of delay at signalized intersections is a complex process and depends on
various variables. Of al the variables impacting delay, degree of saturation (x) and
analysis time period (T) are two of the most important. Although the influence of these
two variables on delay estimations is known and has been widely discussed, there has
been less effort to adequately represent them in delay models. The general methodology
of this research has been to develop improved delay models that better represent the
effects of variable demand and analysis time period.

Two analytical delay models for signalized intersections that consider the variation
in traffic flow and time period have been developed. Unlike existing delay models, the
delay parameter k is expressed as a function of degree of saturation (x) and analysis time
period (T) in both models. A comparative study of the new models against the existing
models verified the new models.

The TRAF-NETSIM microscopic simulation model was used for over-saturated
conditions to validate the delay models. The results obtained from the simulation and the
devel oped models were statistically analyzed and were in close agreement.
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