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Abstract

Bike-sharing systems allow people to rent a bicycle at one of many automatic rental stations
scattered in the city, use them for a short journey and return them at any other station in the city.
Recently many cities around the world deployed such systems in order to encourage their citizens
to use bicycles as an environmentally sustainable, socially equitable mode of transportation, and as
a good complementary to other modes of the mass transit systems. A crucial factor for the success
of a bike sharing system is its ability to meet the fluctuating demand for bicycles and for vacant
lockers at each station. This is performed through a repositioning operation which consists of
removing bicycles from some stations and transferring them to other stations, using a dedicated
fleet of trucks. Operating such a fleet in a large bike sharing system is an intricate problem
consisting of decisions on the routes that the vehicles should follow, and the number of bicycles
that should be removed or placed in each station at each visit of the vehicles. In this paper we
present our modeling approach to the problem, which is unique in its objective function, and
incorporates additional characteristics that are new to the literature. Several Mixed Integer Linear
Program formulations are then presented. We discuss the assumptions and implications associated
with each, and compare their performances through an extensive numerical study. The results
indicate that one of the formulations is very effective in obtaining high quality solutions to real life
instances of the problem consisting of up to 104 stations and two vehicles. The optimality gap in
these instances was quite small (2.97% on average and no more than 5.41%). It is also indicated

that under certain conditions, other formulations may become preferable.

1. Introduction

Bike-sharing systems allow people to rent a bicycle at one of many automatic rental stations scattered
in the city, use them for a short journey and return them at any other station in the city. Recently many
cities around the world deployed such systems in order to encourage their citizens to use bicycles as
an environmentally sustainable and socially equitable mode of transportation, and as a good
complementary to other modes of mass transit systems (mode sharing). In addition, a municipal bike-
sharing system may yield revenue for the city in the compliance carbon offset market, see for example

Capoor and Ambrosi (2009). One of the largest bike-sharing system as of today is Vélib launched on
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July 2007 in Paris (www.velib.paris.fr). It now consists of some 2000 renting stations and offers more
than 20,000 bikes for rent. The company operates a fleet of 25 trucks to perform the repositioning
operation. As of December 2010 some 238 cities around the world deployed such systems and 53 are
in planning stages, see MetroBike LLC (2011).

A crucial factor for the success of a bike sharing system is its ability to meet the fluctuating
demand for bicycles at each station. In addition, the system should be able to provide enough vacant
lockers to allow the renters to return the bicycles at their destinations. Indeed, the main complaint
heard from users of bike-sharing systems in forums and blogs regards to unavailability of bicycles and
(even worse) unavailability of lockers at their destination. In Brussels, for example, a voluntary group
of users created a web service that pulls inventory data from the city's bike-sharing (Villo) website in
order to monitor the service level and create a public pressure on the operator to improve it.
According to the group’s web site (http://www.wheresmyvillo.be/), their main cause is to make
“JCDecaux [the operator] drastically improve the availability of bikes and parking spaces, through
better reallocation of bikes”. Their website displays statistics about the percentage of time in which at
least one bicycle (resp., locker) was available in each station during the last seven days. As of October
14, 2010 the ten worst stations, out of the system’s 180 stations, could not provide a single bicycle
more than 33% of the time (resp., provide a single locker more than 23% of time).

Meeting the demand for bicycles and vacant lockers is a particularly challenging problem due to
inherent imbalances in the renting and return rates at the various stations. In some cases, the
imbalance is temporary, e.g., high return rate in a suburban train station in the morning and high
renting rate in the afternoon. In other cases the imbalance is persistent, e.g., relatively low return rate
in stations located on top of hills. Satisfying the users’ demand subject to such imbalances requires
regularly removing bicycles from some stations and transferring them to other stations. This task is
performed using a dedicated fleet of light trucks. We refer to this activity as repositioning bicycles.

Thus, the bicycle repositioning problem involves routing decisions concerning the vehicles, and
inventory decisions concerning bicycles in the rental stations. The latter problem involves determining
the number of bicycles removed or placed in each station at each visit of a vehicle, with the objective
of achieving a high level of users’ satisfaction from the system, defined more precisely in the sequel.
The repositioning operation can be carried out in two different modes: one is during the night when
the usage rate of the system is negligible; the other is during the day when the status of the system is
rapidly changing. We refer to the former as the static repositioning problem and to the latter as the
dynamic repositioning problem. Some operators use the former mode, some use the latter and some
use a combination thereof, Callé (2009).

Since automated bike sharing systems are quite new, the operations research literature on
problems related to it is sparse. Such systems raise modeling questions, as well as challenges
concerning devising appropriate solution methods to solve the resulting problems. While the domain

of bike sharing systems’ operation is yet to be studied, some aspects of it have already appeared in the
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literature on vehicle and inventory routing, as described in Section 2. In this paper we focus on the
static mode of operation which benefits from a practical advantage because it allows the repositioning
fleet to travel swiftly in the city without contributing to traffic congestion and parking problems. The
static problem needs to be solved once at the beginning of every night, based on the status of the
system at that time and the demand forecast for the next day.

The contributions of this paper are the following:
First — Introduction of a new problem:
We introduce a new inventory-routing problem, arising from a new application area, namely bike
sharing systems, which is timely, relevant and challenging.
Second — Presentation of mathematical models for the new problem:
We present our modeling approach to the problem of repositioning in a bike-sharing system, which is
unique in its objective function, and incorporates additional characteristics that are new to the
literature. The chosen objective function is based on practical considerations and is quite unusual
compared to typical routing problems as it focuses on minimizing the user dissatisfaction in face of
stochastic demand. Based on our modeling approach we offer several Mixed Integer Linear Program
(MILP) formulations, each is associated with a certain vision on the problem's physical
characteristics. As a result, they are distinct from each other with respect to permissible actions of the
repositioning vehicles. In particular, they differ in their limitations on the allowed set of routes, and in
the restrictions on transshipments of bicycles via intermediate stations.
Third — Development of solution methods:
We develop solution methods to the problem, that are based on the MILP formulations described
above, combined with some algorithmic enhancements. The algorithmic enhancements are steps taken
beyond a straightforward application of a MILP solver, and are required in order to obtain good
solutions in a reasonable time. Technicalities that needed to be worked out in formulating and solving
the problem efficiently may prove to be useful for other routing problems as well, so that the
theoretical contribution of this work may be applicable more generally.
Fourth — Verification through computational experiments:
We solve a variety of instances using the suggested formulations and solution methods, compare their
solutions and running times, and discuss the advantages and disadvantages of each. The results
indicate that one of the formulations and its associated solution method is very effective in solving
real life instances of the problem with up to 104 nodes and two vehicles.
Thus, our contributions are both from a scientific and a practical point of view. As this is the first
work to consider all aspects of the repositioning problem, we see it also as a building block in
developing further models and methods to this complex optimization problem. Towards that, we
provide the community with our set of instances, to be used as benchmark problems.

The rest of this paper is organized as follows: in Section 2 we review the literature, describing

related work from several application areas. In Section 3 we present our modeling approach by
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specifying the underlying assumptions and the chosen objective function, present our formulations,
and sets of valid inequalities to each, that are used to tighten them. In Section 4 we discuss additional
algorithmic enhancements that are needed in order to solve the mathematical models effectively. In
Section 5 we describe our numerical experiments, the results, and their analysis. Finally, in Section 6
we discuss some of our assumptions, their implications, possible extensions and directions for further

research.

2. Literature Review

The bicycle repositioning problem was first introduced in Forma et al. (2010) where a single
formulation to a more restricted problem was presented. The bicycle repositioning problem can be
classified as a variation of the Pickup and Delivery Problem (PDP). Berbeglia et al. (2007) surveyed
the literature on static PDP and classified these problems according to various parameters. By this
classification, the repositioning problem presented in this study is a many-to-many single commodity
PDP with arbitrary vehicle capacities and non-linear objective function, for which no studies are
available. In pickup and delivery problems, as opposed to our bicycle repositioning problem, the
quantities picked-up or delivered to a node are given.

The bicycle repositioning problem also bears great similarities to the Inventory Routing Problem
(IRP), since it needs to determine the routes of the vehicles, as well as the quantities of bicycles to
load or unload at each visited node. However, in IRP, the objective is to determine distribution
policies from one or more depots that minimize the total cost, i.e., the sum of inventory holding and
transportation costs, while avoiding stock-outs and respecting storage capacity limitations, see a
recent survey by Bertazzi et al. (2008).

Another closely related routing problem is the Swapping Problem (SP), first introduced by Anily
and Hassin (1992). In its generic form, the SP is defined as follows: “Each vertex of a graph may
contain an object of a known type. A final state, specifying the type of object desired at each vertex, is
also given. A single vehicle of a unit capacity is available for shipping objects among the vertices.
The swapping problem is to compute a shortest route such that a vehicle can accomplish the
rearrangement of the objects while following this route”. Anily and Hassin (1992) showed that the
problem is NP-Hard and presented a 2.5 approximation algorithm. The SP is, on one hand, more
general than our problem since the objects may belong to more than one type; however, in the SP the
demand at the nodes is limited to one unit, there is one vehicle only, and its capacity is limited to one.
Further studies on the SP focus mainly on special cases of the problem, for which a polynomial time
optimization or approximation algorithms are possible, for example Anily et al. (1999), where a
quadratic time optimization algorithm for SP on a line is presented. A slight variation of SP is the
mixed SP where the vehicle is allowed to temporarily unload some of the objects at nodes other than

their destinations. A recent study by Bordenave et al. (2010) presents a constructive approach and



several improvement heuristics that provide near optimal solutions (optimality gap of less than 1% on
average) of instances with up to 10,000 nodes.

Herndndez-Pérez and Salazar-Gonzalez (2004a) introduced the one-commodity pickup and
delivery traveling salesman problem (1-PDTSP), a generalization of the well-known TSP where each
customer has supply or demand of a given amount of a single product. One vehicle of a given capacity
must visit each customer and the depot exactly once, picking up units of the product from customers
with supply and delivering it to customers with demand, while minimizing the total travel distance.
They present an ILP model for this problem and describe a branch and cut procedure for solving it.
Hernandez-Pérez and Salazar-Gonzalez (2004b) presented heuristic methods for the problem and
demonstrated their applicability for instances with up to 500 nodes. Louveaux and Salazar-Gonzalez
(2009) considered the 1-PDTSP with stochastic demand or supply. They study the problem of finding
the smallest vehicle capacity that assures feasibility, i.e., being able to satisfy all demands; for a given
vehicle's capacity they search for a tour which minimizes the objective function which includes a
penalty that is proportional to the unsatisfied demand.

Raviv and Kolka (2011) develop a method which calculates the expected user dissatisfaction over
a given period in a single bike-sharing station. More specifically, it calculates the expected weighted
number of users who arrive to the station and cannot fulfill their request immediately due to lack of
bicycles or lack of vacant lockers. Their method requires as an input the rates of two independent non-
homogenous Poisson demand streams for users seeking to rent bicycles and users seeking to return
bicycles at the station, and the relative weights of dissatisfaction for unfulfilled requests. They also
proved that the expected weighted user dissatisfaction function is convex in the inventory level at the
station at the beginning of the period (e.g., day), and developed a method to calculate the function
efficiently.

The closest studies to ours is that of Benchimol et al. (2011) and Chemla et al. (2011) who study a
one commodity pickup and delivery problem under the assumptions of a single vehicle and no time
constraint, motivated too by the application of repositioning bicycles. The goal is to minimize the total
travel distance of the vehicle while completing a prescribed repositioning task. Chemla et al. (2011)
describes a branch-and-cut algorithm for solving a relaxation of the problem, from which a solution is
obtained through a Tabu search.

Vogel and Mattfeld (2010) presented a stylized model to assess the effect of dynamic
repositioning efforts on service level. Their model is useful for strategic planning but is not detailed
enough to support the repositioning operation. Nair and Miller-Hooks (2011) used a stochastic
programming approach to handle dynamic repositioning planning in shared mobility systems. Their
model assumes that the cost of moving a single vehicle between two given stations is known and
fixed. In our view this assumption is realistic for one way car sharing systems that motivated their

work. However, Nair et. al (2011) apply a similar model on data obtained from Vélib.



Some authors considered strategic decisions regarding bike rental stations capacity and locations.
Shu et al. (2010) proposed a stochastic network flow model to support these decisions. They use their
model to design a bike sharing program in Singapore based on demand forecast derived from current
usage of the mass transit system. Lin and Ta-Hui (2011) considered a similar problem but formulate it
as a deterministic mathematical model. Their model is aware of the bike path network and mode
sharing with other means of public transportation.

Finally, there are some similarities between bike-sharing systems and car-sharing systems. The
latter may belong to the round-trip type of system, or to the one-way type of system, based on whether
a user has to return a car to the same parking space or can return it to any station, respectively, see, for
example, Mukai and Watanabe (2005) and Uesugi, et al. (2007). However, there are clearly major
differences between bike and car sharing systems, since typically a car is moved from one location to
another by assigning a driver to it, and cars are not moved in batches.

The static bicycle repositioning problem combines some aspects of the studies described above,
but addresses new and broader ones that have not been studied before. One such important aspect is
the objective function, which aims to minimize some measure of expected user’s dissatisfaction,

where all the studies mentioned above consider total travel distance as the sole objective function.

3. Model Formulation

The satisfaction of users from a bike sharing system is a crucial factor in its popularity and success.
Hence, a major challenge in modeling and formulating the repositioning problem is to express the
objective function accordingly. We do so by defining the objective function precisely as the
dissatisfaction of users, to be minimized. Raviv and Kolka (2011) show how to calculate the user
dissatisfaction function based on time-dependent demand distributions for the next day (or any other
chosen planning horizon). This enables us to treat the values of the dissatisfaction functions as known
for every possible inventory level. They further prove that this function is convex, a property which is
crucial for our solution methods. For completeness of our paper, we summarize these results in
Appendix A.

Therefore, the repositioning problem is to determine the route of each vehicle and the number of
bicycles to load or unload at each station that the vehicle visits, such that the sum of the dissatisfaction
costs at all stations is minimized. The above decisions are subject to capacity constraints of the
vehicles, the stations and the depot, as well as time constraints concerning traveling times, and
loading and unloading times. The latter are assumed to be linear with the number of bicycles
loaded/unloaded.

Additional modeling choices are associated with permissible actions of the fleet of vehicles
performing the repositioning operation, in particular, limitations on the allowed set of routes and/or

limitations on the quantity of bicycles loaded / unloaded at each station. Such limitations may result



from operational considerations or from computational limitations. They are described and discussed
in details later in this section, when presenting the various mathematical formulations. Table 1 at the
end of this section summarizes the capabilities and assumptions of the formulations presented in this
paper.

In the static version of the problem studied here, repositioning is performed while the demand for
bicycles and vacant lockers is assumed to be null. Indeed, in reality the demand during the night is
negligible. A given length of time (say, five hours, from 1 a.m. to 6 a.m. every night) is allotted to the
repositioning operation, and its purpose is to improve the starting conditions (bicycle inventory levels
at the stations) of the next day.

While one could argue that a bi-objective function should be used, where a second objective
represents the operating costs of the repositioning fleet, we believe that adding this term is not needed
because the cost of hiring the drivers and maintaining the vehicles is sunk at the point of time when
the actual repositioning operation is performed. Nevertheless, in all formulations presented in this
paper it is straightforward to add the operating costs to the objective function, if desired.

Next we present notation that is common to all our formulations.

3.1 Notation
The static repositioning problem is described by the following sets and parameters:
N set of stations, i = 1, ..., |N|

N, set of nodes, including the stations and the depot (denoted by i = 0),i =0, ..., |N|

1% set of vehicles, v =1, ..., |V|

s quantity of bicycles at node i before the repositioning operation starts

Ci capacity of bicycles (number of lockers installed) at station i € N

Co capacity of bicycles at the depot (available space); note that this parameter may be

represented by a large number, if no space constraint exists.
ky capacity (number of bicycles) of vehicle v € V
fi(w) cost (dissatisfaction, in units of, e.g., expected weighted unfulfilled requests of users) of

reaching a level of u bicycles at station i at the end of the repositioning operation, u =

0,..,¢
tij Traveling time from station i to station j
T time allotted to the repositioning operation, also referred to as a planning horizon
L time required to remove a bicycle from a station and load it onto the vehicle
U time required to unload a bicycle from the vehicle and hook it to a locker in a station



3.2 Arc-Indexed Formulation

Our first mathematical formulation of the problem is referred to as an arc-indexed (Al) formulation.

Initially its objective function is represented by a sum of convex functions, while later these functions

are linearized in an exact manner through a set of constraints. This formulation is similar in the

definition of its decision variables to classical three index formulations of other routing problems.

Still, some of its characteristics are unique to this particular application. An assumption of this

formulation is that each station may be visited at most once by each vehicle, although a certain station

may be visited by several vehicles. We define the following decision variables:

Xijv

Yijv

Vi,
viy
div

Si

a binary variable which equals one if vehicle v travels directly from node i to node j, and zero
otherwise;

quantity of bicycles carried on vehicle v when it travels directly from node i to node j, and
zero if the vehicle does not travel directly from i to j;

quantity of bicycles loaded onto vehicle v at node i;

quantity of bicycles unloaded out of vehicle v at node i;

auxiliary variables, used for sub-tour elimination constraints;

inventory level at node i at the end of the repositioning operation;

The following parameter needs to be defined and used specifically in this formulation:

M

An upper bound on the number of arcs in a tour whose length is at most T time units, which
visits each station at most once; (M = |N,| is a trivial such upper bound; it may be

strengthened when T is small, by solving a simple integer program).

(P1) — Arc indexed (Al) formulation

MinYiey fi(si) (1)
s.t.

si =5 — Zoev iy — Vi) Vi€N, (2)
Vi = Viv = Djeng j#i Vijy — L jengj=i Vjiv ViENy, VveV (3)
Yijp < kvXijy Vi, jENyi#j, VVEV (4)
ZjeNO,thixijv = ZjeNo,j;:ixjiv ViENy,VvevV (5)
DjeNg ji Xijy < 1 VieN, VveV (6)
Yvev Viy < ¢ Vi€ N, (7)
Yvev Viy < € — S} Vi€ N, (8)
Yien, (Vi —¥i) = 0 VvEV )



Yien(Lyh, + UyE) + Tien(Lyoiv + UVion) + Bi jengiizj tijXijp < T

VveV (10)
Qv = Qi +1—M(1 - x;5,) ViENy,jEN,i#j,VVEV (11)
Xijy €{0,1} Vi,jENy:i#j VVEV (12)
yk >0, yZ =0, integer Vi ENy,VVEV (13)
Yijp =0 Vi,jENy:i#j VvVEV (14)
5i=0 VieN, (15)
qin =0 Vi €E Ny, VVEV (16)

The objective function (1) minimizes the total cost (dissatisfaction) incurred at all stations.
Constraints (2) are inventory-balance constraints at the nodes (the stations and the depot). Constraints
(3) represent the conservation of inventory on the vehicles, and constraints (4) limit the quantity
carried on each vehicle to its capacity. These constraints also set to zero the quantity carried on a
vehicle when it travels directly from i to j if the vehicle does not use that arc. Constraints (5) are
vehicle flow conservation equations. Constraints (6) assert that each station is visited at most once by
each vehicle and Constraints (7) (resp., (8)) limit the quantity picked-up by all vehicles from a station
(resp., delivered to a station) to the quantity available there initially (resp., the residual capacity of the
station), see discussion below. Note that Constraints (7) also imply non-negativity of the inventory
variables, while constraints (8) also assure that the inventory at each station and at the depot is
bounded by its capacity, therefore these two restrictions are not written explicitly. Constraints (9)
stipulate that all the bicycles that are loaded onto the vehicles are also unloaded. Constraints (10) limit
the total loading and unloading times plus the travel times to the length of time available for the
repositioning operation. Constraints (11) are sub-tour elimination constraints that are similar to those
of Miller et al. (1960). Finally, (12) and (13) are binary and general integrality constraints,
respectively, and (14)-(16) are non-negativity constraints. Note that the integrality of y;;, and s; is
implied by the integrality of yf,, v/ and s?.

Note that the objective function is defined over integer inventory values and supported by a
piecewise linear and convex function. We exploit these properties in order to linearize the objective
function, so that the above formulation becomes a MILP.

Towards that, we define and calculate foralli = 1,...,Nand u =0, ..., ¢;-1:
b, =filu+1) - fi(w)

Ay = fl(u) — byt u



Thus, by, is the marginal cost (which may be negative) of the (u + 1)t bicycle at station i.
Alternatively, a;, and by, represent the intercept and slope, respectively, of the linear function that

supports the convex cost function f;(.) at the level of u, see Figurel.

»
»

) u
01 2 Ci

Figurc 1. ninear functions supporting f; (u)

Then, linearity of the formulation is achieved by further defining the following decision variables:
gi cost incurred at station i;

We can now replace the previous convex objective function by:

MinXien gi 17)
and add to the formulation the following constraints:
giZaiu+biuSi ViEN,U.:O,...,Ci—l (18)

The resulting MILP formulation consists of the objective function (17) subject to Constraints (2)-
(16) and (18). Note that since the convex function is defined over integer values only (quantity of
bicycles), the linearization scheme, described by (17) and (18), is exact and not approximated. The
following assumptions are embedded in the above formulation:

First, as noted above, each station may be visited at most once by each vehicle, see constraints
(6), however a certain station may be visited by several vehicles. Thus, the total quantity picked-up
from a station or delivered to it by all vehicles is limited as stated in constraints (7)-(8). Together
these constraints verify that bicycles are not transshipped from a station before they are brought to it
(or delivered to a station before space is available) during another visit of the same or a different
vehicle. In other words, these constraints exclude situations in which the inventory level at a station is
negative or exceeds its capacity, in the interim of the repositioning period. In fact, these restrictions
are more severe than required in practice, because they exclude the possibility of a vehicle picking-up
bicycles that were previously brought by another vehicle, or delivering bicycles to a station that has
available capacity due to another vehicle which removed bicycles from it in an earlier visit. The Time
Indexed formulation presented in Section 3.3 relaxes this restriction, but is harder to solve.

Second, it is assumed that all bicycles brought to the depot by the vehicles are unloaded there,
even if the vehicle is about to continue its trip and need to load new bicycles in order to deliver them

to other stations. This is due to the inability of the arc indexed model to keep track of the total number
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of bicycles loaded and unloaded at the depot, and hence the time that these operations consume.
While this assumption is a somewhat conservative, its effect on the solution is marginal.

Finally, vehicles may redistribute bicycles in the system in any way that reduces costs. This
means, for example, that a vehicle may deliver bicycles to a station even if the station already has
more than its “ideal” quantity, that is, the quantity that minimizes itS cost function. Such an action
may be justified if the bicycles are brought from a station where their presence is more costly. Since
the objective is minimizing the overall cost in the system, this capability is desirable.

Solving the problem using the above formulation may become quite time consuming for problems
of realistic size. To enhance the running time, we propose two directions: one is adding valid
inequalities that are specific to this formulation. Another is solving the problem through a two-stage
heuristic, a method which is used also to enhance the running times of the other formulations, and is
described in Section 4.1.

The following valid inequalities may be added to the formulation:

Yjen Xojw = 1 VveV (19)

Constraints (19) verify that each vehicle departs from the depot at least once. We observed
numerically that this valid inequality proved to be particularly useful, since without it, the number of
vehicles that “leave” the depot, in the LP relaxation, is fractional, according to the required capacity.
Forcing a whole vehicle to leave the depot propagates by the vehicle flow conservation equation (5) to

all other visited nodes.

yt, < min(s}, k,) 2 jeNg Xijo VieEN,veV (20)
y2 < min(c; — s, ky) 2 jeN, Xijv VieEN,veV (21)

Constraints (20)-(21) are somewhat similar to constraints (7)-(8), but refer to loading and
unloading quantity limitations by a single vehicle (rather than all vehicles). This enables tightening

the right hand side of the constraint by including the vehicle's capacity, and conditioning it only to

cases in which the vehicle visits the station.

Vi + Viv = X jen, Xijv ViEN,veEV (22)
Constraints (22) eliminate some solutions where a vehicle enters a station without loading or
unloading any bicycle there. It is valid when the distance matrix satisfies the triangle inequality
because then it is always possible to skip a station with no loading and unloading activities.
In addition, if vehicles are identical it is possible to break symmetry by adding the following
constraints:
Yjen] " Xojv < LjenJ " Xo,jv+1 VvevV (23)
In Section 5 we demonstrate the capabilities of this formulation in solving problems of moderate

size.
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3.3 Time-Indexed Formulation

Our second formulation is based on discretizing the time available for repositioning into slots of short
periods, say five minutes each. The length of each such period is denoted by . We define decision
variables with one of the indices representing the time period. Hence, we refer to this formulation as a
time indexed (TI) formulation. The motivation behind it is to be able to “follow” the state of the
system at any point of time, which is helpful in formulating complex situations properly. Indeed, the
time indexed formulation extends the feasible region compared to the arc based formulation as far as
the visits and quantity loaded/unloaded at each station are concerned. Namely, it no longer needs to
limit the quantities of bicycles transshipped via other stations as described in the arc based
formulation (see Constraints (7) and (8)), and it no longer needs to limit each vehicle to visit each
station at most once.

In the formulation below, the discretized times are referred to as periods. We define a discretized
travel time matrix, denoted by ¢; ;- These travel times are calculated by dividing the actual travel time
by the period length, 7, and rounding it up to the next integer, to assure feasibility. In addition we set
t;; = 1, where traveling from node i to itself represents dwelling at the node for one period. Let
T' = T/t represent the number of periods in the planning horizon. T” is assumed to be integer.

The above discretization procedure is applied to the traveling times, and the smaller t is chosen to
be, the closer the resulting model is to the continuous times case. However, loading and unloading
times are typically much smaller than traveling times, and discretizing them in the same manner
would result in an unreasonable deviation from the continuous case. Therefore, in the sequel we show
how loading/unloading times can be kept continuous and still incorporated in the discrete periodic
model. To ease on the presentation, we first introduce the TI formulation assuming that
loading/unloading times are zero and afterwards explain how to generalize the formulation to include
them back. In this first, more simplistic model, it is assumed that the loading and unloading operations
are carried out at the beginning of a discretized period before the vehicle leaves the node.

In this and subsequent formulations, we directly present the linearized objective function and
supporting constraints, both of which are identical to those of the Al formulation.

The decision variables used in the time indexed formulation are as follows:

Xijt» @ binary variable that equals one if vehicle v starts to travel from node i to node j in period t,
and zero otherwise;

yt,  quantity of bicycles loaded onto vehicle v at node i during period t;

yY,  quantity of bicycles unloaded from vehicle v at node i during period t;

Yijev  number of bicycles carried from node i to node j by vehicle v during period t;

Sit inventory level at node i at the end of period t;

Ji cost incurred at station i; (as in the arc based formulation)

12



(P2) — Time indexed (TI) formulation

Min Yien gi (24)
s.t.

gi =y + by sy VieEN,u=0,..,¢—1 (25)
Sio =S¢ Vi€ N, (26)
Sit = Sir-1 + Loev(Vity — Vi) VieNyt=1,..,T 27)
Sit < ¢ ViENy,t=1,..,T (28)
Y jeny Xojor = 1 Vvevr (29)
Y jen, X oo = 1 VveV (30)
2 jen, Xjemtl v = YikeN, Xiktv VieNy,t=1,..,T"-1L,veV (31)

— U L
ZjeNo yj.i.t—t]’-i v ZkENO Yiktv t YVitv — Yitw

VieNy,t=1,...T"-1LvevV (32)
Yijeo < KoXijew VieNy,t=1.,T,VveV (33)
Yiry < min(ci, ky) Xjen, Xijev VieNg,t=1,.. T, VvEV (34)
Yity < min(c;, Ky) Tjen, Xijev VieNgt=1,..,T, VVEV (35)
yh, =0, yI, >0, integers VieENyt=1,.. ,T"VVEV (36)
xijev € {0,1} Vi,j€ Nyt =1,..., T, vEV (37)
Yijtv = 0 Vi,j € Np,t =1,..,T, veEV (38)
Sic =0 VieN,t=0,..T (39)

The objective function (24) is identical to the linearized objective function in the arc based
formulation. Similarly, constraints (25) are the linear constraints that support the convex cost
function, defined here with respect to the inventory at each station at the end of the last period, 7.
Constraints (26) and (27) define the initial inventory and the inventory balance at the nodes while
constraints (28) specify that the inventory at each node in each period is bounded by its capacity.
Constraints (29) and (30) specify that each vehicle departs from the depot at the beginning and returns
to it at the end of the repositioning operation, respectively. Constraints (31) are vehicle flow
conservation equations, they stipulate that when a vehicle enters a node at some period (after traveling
to it a certain number of periods according to its origin), it will leave the node at that period, possibly
going to the same node itself. Thus, these constraints schedule the movement of vehicles consistently
with the (discretized) distance matrix. Constraints (32) represent the conservation of inventory
(bicycles) on the vehicles in each period, and constraints (33) limit the quantity carried at each vehicle
in each period to the vehicle's capacity and stipulate that bicycle are carried only on the chosen links.

Constraints (34) (resp., (35)) assure that no bicycles are loaded (resp., unloaded) at a node in each
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certain period if the node is not visited at that period. Finally, constraints (36)-(39) are integrality and
non-negativity constraints. In this formulation any reference to an index of a vector or matrix that is
out of bound should be replaced by zero.

The important advantages of the T1 formulation mentioned at the beginning of this section are
made possible due to monitoring the inventory at each station in every period. Note that it also means
that sub-tours of the vehicles are allowed in the solution, although each vehicle still departs from the
depot and returns to it. This additional flexibility in forming solutions is likely to improve the
repositioning operation and consequently the optimal objective function’s value. The ability to
redistribute bicycles in the system in any way that reduces costs exists in the time indexed
formulation, in the same way as it does in the arc based formulation, see the discussion there.

We define t;; = 1 to allow dwelling at the stations. Note that dwelling may be desirable exactly
for the reasons indicated above, namely, to synchronize the visits of different vehicles at the station.
As the arc based formulation does not keep track of time, this capability cannot be observed and
utilized by its solution.

On the other hand, the TI formulation suffers from a limitation which results from discretizing the
travel times. To assure feasibility, the integer traveling times are rounded up, which causes
unnecessary slacks in the schedule. To partially overcome this problem, as well as to add the positive
loading/unloading times back into the formulation, we extend the above formulation by modifying
and adding some constraints. The modifications are non-trivial, since the revised model combines a
discrete and continuous representation of time. This enables us to gain the advantages of discreteness,
discussed above, together with increased accuracy of the real time constraints of the system.

First, we add the following two sets of constraints:

Qi jeNy aitsw LijXije—t]; v + Yieny Lesw(LYiry + Uyi,) Sw -t

vw=1,.. T VveV (40)
DlijeNy Lt<w LijXije—t; v + Vieny Lesw(LYity +UYiL) 2 (W —=2) 1

vw=1,.. T VveV (41)

In constraints (40), the restriction on time is enforced every period (i.e., every T continuous time
units). It allows monitoring closely the total time spent on all activities (traveling and
loading/unloading). While the first term on the left hand side of the constraint represents the total
completed travel time of vehicle v on all arcs up to a certain discretized period, w, the second term on
the left hand side of the constraint represents the total loading/unloading time spent by that vehicle up
to the same period. Note that both terms on the left hand side of this constraint represent continuous
times, and so does the right hand side. Since the actual travel times may be lower than the time in a
complete number of periods, a slack may be created by the first term on the LHS of the constraint,
which may be used by the second term of the LHS of the constraint, by loading/unloading a larger

quantity of bicycles than is actually possible in a certain number of periods, see also constraints (42)
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and (43) below. In particular if a vehicle is dwelling at some station i during a period, which is
represented by traveling from node i to node i, the whole 7 units of time can be spent by loading and
unloading bicycles since t;; = 0 while t';; = 1.

In Constraints (41), a lower bound is enforced on the time restriction, with the purpose of keeping
the time of the planned schedule close to its execution. This is important for the accuracy of the
inventory levels at the nodes, which is necessary for the synchronization among vehicles, i.e., making
sure that no vehicle plans to pick-up bicycles which are not brought there yet (by another vehicle).
While lack of synchronization may still apply in the interval of two periods defined between the upper
and lower bounds of Constraints (40) and (41), we believe that it is quite negligible.

Next, consider Constraints (34) and (35) and replace them by the following constraints:

Vi < min(2L, ¢;, ky) X jen, Xijot ViENy,t=1,..,T, VvEV (42)
Yity < min(U, ¢;, ky) T jen, Xijut ViENyt=1,..,T, VvEV (43)
where the following two parameters are defined and assumed to be integers:

L maximum number of bicycles that can be loaded during one period (= t/L)

U maximum number of bicycles that can be unloaded during one period (= t/U)

These constraints add a limitation on the loading / unloading quantities during one period (beyond
the original limitations), which are related to the time it takes to perform these operations. Yet, the
limitation is expressed as twice the actual number, to allow utilizing the slack that may have been
created by the actual (rather than rounded up) travel times in Constraints (40).

Given the flexibility of the TI model in terms of its allowed options (re-visiting a node, etc.), we
believe this formulation is a better representation of the real system than the Al formulation. Clearly,
as the length of a period in the discretized model (t) becomes shorter, the model becomes closer to the
continuous one, but also includes a larger number of periods which make it harder to solve.

3.4 Sequence-Indexed Formulation

The next formulation is based on the idea of defining the journey of each vehicle according to the
sequence of nodes which the vehicle visits. In this way, only one node index is required in the routing
decision variables (the index of the node where the vehicle is located), instead of two in the previous
two formulations (denoting the arc on which the vehicle traverses). The other index required, in
addition to the vehicle index, is the position of the node in the sequence. The sequence indexed
formulation handles time in an exact manner as in the Al formulation, but it allows several stops at a
station as in the T1 formulation. However, if the number of vehicles is greater than one, it constraints
the number of bicycles transported to and from a certain station, as in constraints (7) and (8) of the Al
formulation. The following parameters need to be defined and used in this formulation:

A an upper bound on the number of stops in the trip of each vehicle. In Section 4 we discuss

how this parameter is derived;

o]

= maX;ey, t;; IS the longest traveling time into node j from all nodes
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The decision variables are defined as follows:

X;qy @ binary variable which equals one if the a® stop of vehicle v is at node i, and zero otherwise;

yt.  quantity of bicycles loaded at node i onto vehicle v in its at® stop;

yZ.,  quantity of bicycles unloaded at node i out of vehicle v in its a‘" stop;

Taw time of completing loading/unloading at the at" stop of vehicle v;

Vo quantity of bicycles carried on vehicle v after loading/unloading at its at" stop;

S; inventory level at station i at the end of the repositioning operation;

(P3) — Sequence Indexed (SI) Formulation

Min Yien 9

s.t.

gi = iy + byys; VieN,u=0,..,¢—1
Si = Slp - ZUEV Za(yiLav - yil(]w) VieN

YieN Xigy = 1 Va=1,.. A4 VveEV
Xo1w =1 VveV

Xoay =1 VveV

Toy = Tge1p — 7_",(1 - xjav) + Xien, tijXia-1v + ZiENO(LYiLav + inl{w)

Vj € Ny, Va=2,VvEV

Ty = LYGip Vv eV
Taw <T Vv EV
Loy Viaw < 57 Vi € N,
LawViar < € — S} Vi € N
yk , < min(k,, s2)xiqy Vi € Np,Va=1,..,4 VVEV
yZ ., < min(ky, ¢; — s))xiqy Vi €Ny, Va=1,..,4, YV EV

Yav = Ya-1v T ZiENo(yiLav - yil(]w) Va=1,..,4, VvEV

Yav < Ky va=1,..,4, VvEV
Yov =0 Vv EV
Yav =0 Vv EV
yk,=0,y2, >0, integers VieENVa=1,.. A YvEV
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(49)

(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)

(61)



Xiqu € {0,1} VieN,Va=1,.., A VveEV (62)
Yavr = 0 Va=1,..,A VveEV (63)
5;=0 VieN (64)

The objective function (44) is identical to the one in the previous formulations and constraints
(45) are the linear constraints that support the convex cost function, defined with respect to the ending
inventory at each station, which is the inventory after loading/unloading during all visits. Constraints
(46) define the inventory at the stations at the end of the repositioning operation. Constraints (47)
make sure that each vehicle stops at one station at a time and constraints (48) (resp., (49)) verify that
all vehicles depart from (resp., return to) the depot at the beginning (resp., end) of the repositioning
operation. Constraints (50) define the minimal time required to reach node j which is the at" stop,
when the (a — 1)t stop is at node i. The minimal time includes, beyond the time to reach node i, the
loading/unloading times at node i and the travel time between i and j. Constraints (51) define the time
in which vehicle v leaves its first stop (the depot) to be the completion time of loading there (note that
the vehicle cannot unload in the first stop at the depot). Constraints (52) restrict the last visit of each
vehicle to occur no later than time T. Constraints (53)-(54) limit the quantity picked-up from a node
(resp., delivered to a node) in all stops of all vehicles to the quantity available there initially (resp., the
remaining capacity of the station), as limited in the arc based formulation. These constraints make
sure that the capacity of a node is not exceeded and the inventory at the node is non-negative.
Constraints (55)-(56) allow loading and unloading of bicycles at a certain node only when a vehicle
stops at that node. Constraints (57) are inventory balance constraints on each vehicle after each stop
while constraints (58) are vehicle capacity constraints. Constraints (59) (resp., (60)) make sure that
each vehicle is empty before it reaches the first stop (resp., after visiting the last stop, which is the
depot). This stipulates that the total loading and unloading quantities equal to each other. Finally,
(61)-(62) are integrality constraints and (63)-(64) are non-negativity constraints.

We note that if there is only one vehicle, there is no need for synchronization among vehicles and
hence constraints (53)-(54) can be replaced by: 0 <s? — Y ca (Vi1 —v2) <c VA =1,..,4A
and the right hand side of constraints (55)-(56) should be replaced by min(k,, ¢;)x;q, in order to
allow unlimited transshipments.

Several valid inequalities, described next, were developed and found to be helpful in speeding-up
the running time of the above formulation. The following constraints were added with respect to the
minimal time required to reach the a™ stop, where T]- = Mminjey iz tij and T, = minjen,:ixj tij -

Tay 2 Ta-1v + ZjEN(Ly]Lav + Uy}(]w) + ZjEN zjjav Vaz2 VveV (65)

Tav = ra—l,v + ZjEN(LyiLav + inl(]w) + ZiEN Tixi,a—l,v Va = 2' VvevV (66)
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Constraints (65) state that the time to complete loading/unloading at the a‘" stop is at least that of
completing loading/unloading at the (a — 1)5¢, plus the time spent on loading/unloading at the a‘"
stop, plus the minimal time it takes to reach the a'* stop from any other node. Constraints (66) are
similar, except that the last term is replaced by the minimal time it takes to reach another node when
leaving the node visited in the (a — 1)t stop. Note that there are even stronger special cases of
constraints (65) for a=A and of constraints (66) for a = 1, since the last and first stops are forced to
be the depot.

Next we add additional valid inequalities to break some symmetry in the problem, which is useful

in reducing the search space:

Xigy T Xigy1v <1 VieN,a=1,..,A—-2, VveV (67)
Xiaw < Vi + Vi ViEN, a=2,..,A—1, YvEV (68)
anU + xO'a_'_l'U - 1 S xO'a_'_z'v V a= 1, ,A - 2, Vv E V (69)

Constraints (67) eliminate solutions with two consecutive stops at the same station and Constraints
(68) eliminate solutions where a vehicle stops at some station but does not load or unload anything
there. While these solutions are feasible they are weakly dominated by others. Constraints (69) make
sure that no vehicle has two consecutive stops at the depot, except possibly last stops, after all
loading/unloading activities are completed. This is achieved by requiring that once a vehicle stays two

consecutive stops at the depot, it must remain there.

3.5 Swapping Based (SB) formulation
Our last formulation is motivated by the similarity of our problem to the swapping problem. As
mentioned in the literature review, the swapping problem is similar to ours in that objects need to be
moved from nodes where they are initially available, to nodes where they are demanded. Thus, our
last formulation is based on the concept of supply and demand nodes. We denote by s;" the quantity of
bicycles which minimizes the cost function f;(-) at station i, and refer to each station i as a supply
node if its initial inventory is larger than s; and as a demand node if it is smaller. Moreover, to adhere
to the swapping application and formulation, we aim to represent each node as a supply or demand
node of one unit (bicycle) only. Thus, when the supply or demand quantity of a certain station is
larger than one, we duplicate the station, and create as many stations as the supply or demand
guantity. Visiting the first duplicated station associated with a certain original station is equivalent to
picking or removing one unit from the original station, and we set the cost function of the duplicated
stations accordingly, see our notation. All stations i with initial inventory of exactly s;” need not be
included in the problem. Finally, the depot remains as a single node with the same role as in previous
formulations.

The resulting problem has many more nodes than the number of stations. In fact, the number of

nodes is exactly the number of units by which all stations (together) are away from their ideal (cost
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minimizing) quantity. One may refer to it as the "amount of work™ in the system. Thus, we expect that
using this formulation may be useful only for systems in which the amount of work is not very high.
On the other hand, for a given number of nodes, the problem is somewhat easier since there are no
quantity decisions to make. Rather, when a node is visited, the activity performed in it is well defined
by the node type (supply or demand) and always one unit is involved.

Compared with previous formulations, in the SB formulation vehicles may not redistribute
bicycles in the system in any way that reduces costs. This is because every duplicated station is
associated with either a surplus or a shortage (compared to the minimizing quantity) of one bicycle, so
that only a pre-defined operation of removing (resp., delivering) is allowed from any particular node.
On the other hand, visiting a station multiple times is possible; in fact it is obtained when visiting
duplicated stations of the same original station not consecutively.

The swapping based (SB) formulation is similar to the arc indexed formulation, where each
station represents a copy of the original one. More details on the SB formulation and how its unique
characteristics are formulated compared to the Al formulation, are presented in Appendix B. As
mentioned above, this formulation by itself is not expected to be an efficient one for most realistic
systems (an expectation that was confirmed in a limited numerical experiment). However, the way in
which the swapping and the repositioning problems are similar on one hand and different on the other
hand is established and made clear by presenting this formulation. This may become useful for
solving the repositioning problem if in the future an efficient algorithm for the swapping problem may
be developed, in a way that can be easily amended to the repositioning problem.

We conclude this section, in which various formulations were presented for the repositioning
problem, with a summary of the capabilities and assumption embedded in these formulations. This

summary is organized in a tabular format, see Table 1.
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Table 1: Comparing the assumptions and capabilities of the various formulations

Assumption

Arc Indexed

Time Indexed

Sequence Indexed

Swapping Based

Vehicles can visit each
station an arbitrary number
of times.

No. Each vehicle
can visit each
station at most
once. Each station
can be visited by
several vehicles.

Yes

Yes

Yes

Transshipments are allowed, | Yes, but the Yes, in an unlimited | Same as in the Arc | No.
that is, vehicles can unload maximum number manner. Indexed model
bicycles at nodes, to be of bicycles that can except in the single
loaded later on. be unloaded (resp. vehicle case where
loaded) cannot transshipment are
exceed the initial unlimited.
residual capacity
(resp., initial
inventory level) at
the node.
Vehicles can dwell at stations | No. synchronization | Yes Same as inthe Arc | N/A. No
in order to synchronize is guaranteed via Indexed model. Transshipments are
transshipments. restriction on allowed.
loading and
unloading
guantities. See
previous
assumption.
Bicycles can be redistributed | Yes Yes Yes No
in the system in any way that
reduces total costs, even if it
is not locally optimal to do
SO.
All bicycles are assumed to Yes No No Yes
be unloaded at each visit of
the vehicles to the depot.
Other considerations and This model - Accuracy is lost Presumption on the | The size of the

comments

delivered the best
results for most of
the instances in our
numerical
experiment, in spite
of its restrictive
assumptions.

due to the time
discretization.

- The model can be
adapted to the
dynamic problem.

maximum number
of stops is required.

model is affected by
the total amount of
work. Indeed,

the model could not
solve most of our
instances.

4. Algorithmic Enhancements

Solving the formulations presented in the previous section may be quite time consuming, even for

instances of moderate size. In this section we discuss ways to speed-up the computation times of the

various formulations. It includes solving the problems in two stages (Section 4.1), reducing the
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number of binary variables based on geographical considerations (Section 4.2) and a careful selection
of some of the parameters used in the formulations (Section 4.3). Some of these techniques are
heuristic rather than optimal, but in our numerical experiments in Section 5 it is demonstrated that this
fact has a marginal impact on the solution, and when a budget of time is given to solve the problem, it

contributes to improving the overall solution in most cases.

4.1 A Two-Phase Solution Method

The two-phase solution method is motivated by the variables representing the quantity of bicycles
load