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Bike-sharing systems allow people to rent a bicycle at one of many automatic rental 

stations scattered around the city, use them for a short journey and return them at any other 

station in the city. A crucial factor for the success of such system is its ability to meet the 

fluctuating demand for bicycles and for vacant lockers at each station. In order to meet the 

demand, the inventory of each station should be regularly reviewed.  The paper introduces an 

inventory model suited for the management of bike rental stations and a numerical solution 

method to solve it. Extensive numerical study, based on real-life data is presented to 

demonstrate the effectiveness and efficiency of this method. 

 

Keywords: Shared mobility systems, Inventory Management 

1. Introduction and Literature Review 

Bike-sharing systems (BSS) allow individuals to rent a bicycle at automatic rental 

stations scattered around a city; use them for a short journey; and finally return them to 

any other station in the city. As of December 2010, some 238 cities around the world 

deployed such systems and currently 53 are in the planning stage, see MetroBike LLC 

(2011). For a review of the history of BSS and on current trends, see DeMaio (2009).  

Bike-sharing programs encourage residents to use bicycles as an environmentally 

sustainable and socially equitable mode of transportation. Such programs also serve to 

complement other modes of mass transit systems by mode sharing. In addition to these 

transportation functions, a municipal BSS may yield revenue for a city in the framework 

of a compliance carbon offset market, see, e.g., Capoor and Ambrosi (2009).  

 Modern BSS are supported by information systems that provide data about the 

state of the system (i.e., the number of bicycle and lockers available at each station). This 

information is accessible on-line via the World Wide Web and in data kiosks at the 

stations. In addition, since the automatic rental stations identify the bicycles using radio 

frequency identification technology (RFID), operators can easily obtain detailed statistics 
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regarding trips undertaken by users. This information can be used to support operational 

decisions and long-term planning.  

A crucial factor for the success of a BSS is its ability to reliably cope with 

fluctuating demand. Indeed, the main complaints voiced by BSS users relate to the 

unavailability of bicycles at their point of origin and (even worse) of lockers at their 

destinations. For example, in order to improve Brussels’ bike-sharing program (Villo), a 

voluntary group of users created a web service that gathers inventory data from the city's 

BSS website in order to monitor the service level and create public pressure on the 

operator to improve the system. According to the group’s web site 

(http://www.wheresmyvillo.be/), they want to make “JCDecaux [the operator of Villo] 

drastically improve the availability of bikes and parking spaces through better 

reallocation of bikes”.  

Meeting the demand for bicycles and vacant lockers is a particularly challenging 

problem due to inherent imbalances in the renting and return rates at the various stations. 

While the flow of commuters is approximately balanced over the course of a day, this is 

not the case for the flow of bicycles. This is due to the fact that a BSS may be used as a 

partial substitute for other modes of transportation. For example, users may choose to 

ride a bicycle in one direction and take a bus on their way back for a variety of reasons: 

weather or traffic conditions; availability and frequency of the bus service at the time of 

their journey; topography of their route, etc. In some cases, the imbalance is persistent, 

e.g., relatively low return rate at stations located on the top of hills. In other cases, the 

imbalance is temporary, e.g., at suburban train stations there is apt to be a high return rate 

in the morning, as commuters into the city drop off their bikes and in the afternoon a high 

rental rate as commuters exit the train and begin to make their way home.  Satisfying user 

demand subject to such imbalances requires a dedicated fleet of light trucks to regularly 

transfer bicycles among stations. We refer to this activity as repositioning bicycles. 

There are two repositioning modes. Static repositioning is performed during the 

night, when the system is nearly idle; dynamic repositioning takes place during the day in 

order to cope with looming shortages. In practice, many operators work in both modes.   

If one ignores the stochastic nature of the demand, the static bicycle-repositioning 

problem can be classified as a variation of the pickup and delivery problem (PDP), a type 
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of problem that has attracted considerable attention in recent years. Berbeglia et al. 

(2007) surveyed the literature on static PDP and classified these problems according to 

various parameters. Benchimol et al. (2010) and Chemla et al. (2011) studied a single 

vehicle, single commodity pickup and delivery problem without time constraints with the 

goal of minimizing the total travel distance of the vehicle as it completed a prescribed 

repositioning task. These studies are motivated by BSS. Chemla et al. (2011) present a 

branch-and-cut algorithm for solving a relaxation of the problem, from which a solution 

is obtained through a Tabu Search. Both of these papers assume a known target inventory 

level for each station in the system. 

Nair and Miller-Hooks (2011) used a stochastic programming approach to handle 

dynamic repositioning planning in shared mobility systems. Their model assumes that the 

cost of moving a single vehicle between two given stations is known and fixed. This 

assumption is realistic for the one-way car-sharing systems that motivated their work. 

Vogel and Mattfeld (2010) presented a stylized model to assess the effect of dynamic 

repositioning efforts on service levels. Their model is useful for strategic planning but is 

not detailed enough to support repositioning operations. 

Some authors consider strategic decisions regarding the capacity and locations of bike 

rental stations. Shu et al. (2010) proposed a stochastic network flow model to support 

these decisions. They used their model to design a BSS in Singapore based on demand 

forecast derived from current usage of the mass transit system. Lin and Ta-Hui (2011) 

considered a similar problem but formulated it as a deterministic mathematical model. 

Their model is aware of the bike path network and mode sharing with other means of 

public transportation. 

The static repositioning operation poses a new and challenging inventory routing 

problem. In this paper, we focus on the inventory management part of this problem. 

Accordingly, we define a user dissatisfaction measure; model user behavior when facing 

shortages; and devise an efficient method to estimate the expected value of this measure 

given an initial inventory, station capacity, length of the replenishment cycle and the 

(stochastic) demand patterns. 

The inventory problem associated with a bike sharing rental station can be 

classified as a closed-loop inventory problem. (There is considerable literature on this 
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topic. For a comprehensive review, see Dekker et. al. (2004). However, the available 

models assume that the replenishment operations by new and used items occur 

periodically. These models do not capture the minute-to-minute dynamics of a bike rental 

station where replenishment by users who return bicycles (the equivalent of 

replenishment by used items) occurs randomly at much higher rates but in smaller 

quantities than replenishment by repositioning vehicles (equivalent of replenishment by 

new items). The latter may occur every several hours or even every night. Moreover, in a 

BSS, users may choose to either abandon the station when bicycles or vacant lockers are 

not available or wait until one becomes available. 

The main contributions of this paper are: introducing a user dissatisfaction function 

to measure the performance of a station; presenting an inventory model of a bike sharing 

rental station; establishing the convexity of two important special cases of this function; 

and devising an efficient approximation method to estimate them.  

The inventory model we developed is useful for supporting operational tasks such 

as inventory routing of bicycles among stations, see Raviv, Tzur and Forma (2011). It can 

be also used for strategic decisions regarding the system-wide inventory of bicycles and 

for station size decisions (discussed in greater detail in the conclusion section). In 

addition we believe that our approach may be applicable for other closed-loop inventory 

systems.  

Notation and a formal definition of the model are presented in Section 2. The 

convexity of the user dissatisfaction measure for two important special cases is proved in 

Section 3.  In Section 4, a method to approximately solve the model under the assumption 

that the arrival processes are Poisson is devised. The results of numerical experiments 

that demonstrate the effectiveness and robustness of the approximation are presented in 

Section 5. We conclude with a discussion in Section 6 about possible straightforward 

applications of the results presented in the paper and some ideas for future research. 

 

2. Notation and Problem Formulation 

We consider a single bike-sharing station over a finite horizon     T] with the following 

settings. At time 0, the inventory level (number of bicycles) in the station is set. During 

the horizon, users who wish to rent or return bicycles arrive at the station according to an 
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arbitrary stochastic process. If the desired service can be provided right away, the bicycle 

is rented or returned and the inventory level is updated. If the service cannot be provided 

(i.e., empty station for a renter or full one for a returner) then the user decides whether to 

queue at the station or to abandon the system, i.e., to forgo renting a bike on this 

particular occasion. The abandoner may decide to seek the service at another station but 

this is not within the scope of our single-station model. If the user decides to join the 

queue, we assume that she will wait until the service can be provided
1
. The user’s 

decision may be affected by her prior knowledge of the demand patterns at the station at 

the time of her arrival and on the length of the queue, i.e., the amount of time she will 

have to wait. 

There are four sources of user dissatisfaction in this model. The system is penalized 

for each one of them.   

   Penalty charged for each potential renter who abandons due to shortage of 

bicycles. 

   Penalty charged for each returner who abandons due to shortage of vacant 

lockers.  

   Penalty charged per time unit of a renter waiting for an available bicycle.  

   Penalty charged per time unit of a returner waiting for a vacant locker.  

 

The number of lockers in a station is denoted by  . We refer to this value as the 

station capacity. Next we present a notation that approximately describes a particular 

realization of the demand.  The description is based on discretization of the horizon to   

short period. These periods are indexed by   {       }. The state of the station is 

given by an integer number  . A state   {     } refers to a situation where the number 

of bicycles in the station is   and no user is waiting for a bicycle or a locker.  A state 

    refers to a situation where the station is full and     users are waiting for a vacant 

locker and a state     refers to a situation in which the station has no bicycles and      

are waiting for one.  

                                                 

1
 While this is not necessarily a rational behavior, especially when the demand is non-homogenous 

over time, we believe that it approximately represents rational behavior because in many cases the expected 

remaining time is non-increasing over time. 
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      The number of users that arrived at the station at period   in order to rent a 

bicycle and were ready to join the queue assuming the state of the system at the 

beginning of the period is  .  

      The number of users that arrived at the station at period   in order to return a 

bicycle and were ready to join the queue assuming the state of the system at the 

beginning of the period is  .  

 

The random variables       and       are determined for each realization. Both are 

defined for           and must satisfy               and              . That 

is, any user who is willing to wait in a long queue will be willing to wait in a shorter one. 

Next, we define the following set of state variables for   {     }: 

 

   

The state of the station at the end of period  . If       , then    is the 

number of bicycles in the system. If     ,  then the station is empty and there 

are      users waiting in the queue for the bicycle. If     , then the station is 

full and there are      users waiting in the queue for a locker. 

 

Finally,    is a design variable that represents the initial inventory level of bicycles. 

Using this notation the inventory problem of a bike rental station can be formulated as 

follows: 

    
   {     }

 {∑ (
                           

                                        
)

 

   

} (1) 

Subject to  

                           (2) 

 

The objective function ‎0(1) to be minimized is the expected user dissatisfaction 

over all possible realizations expressed as a weighted sum of the total number of 

abandonments and the waiting time of users. The function in ‎0(1) is the User 

Dissatisfaction Function (UDF). Constraint (2) is inventory balance equality.  

It is possible to estimate a solution of (1) and (2) using numerical methods, such as 

a Monte Carlo simulation. Since the program consists of a single design variable that can 

only obtain values in the finite set {     } it is possible to use such method in order to 
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solve the problem by evaluating all candidate solutions. However, our analysis in Section 

3 reveals some useful structural properties of the UDF.  

We point out that the value of the UDF is of interest for all values of initial 

inventory    and not only for the ones that minimize the function. This is due to the fact 

that in many cases it is impossible or too costly to set the initial inventory levels at all 

stations to their ideal values. In order to understand the trade-off between the number of 

bicycles in the system, the cost of transferring bicycles among stations and user 

dissatisfaction, a method to efficiently calculate the UDF is needed.  

3. Convexity of the User Dissatisfaction Function 

Recall that the objective function (1) expresses our measure for the expected 

dissatisfaction caused by a shortage of bicycles and lockers in a station. In this section we 

prove that in some settings this function is convex with respect to the initial inventory,   .  

The convexity of the UDF is of interest for the following reasons. First, it allows a 

solution of the stochastic program (1)-(2) in           evaluation of the function. 

Without such knowledge,     evaluations are needed. Note that depending on the 

nature of the underlying stochastic process, the evaluation may be computationally 

demanding. This would be the case if, for example, the evaluation is done by discrete 

event simulation.  Other merits of the complexity property are discussed in Section 6. 

In this section we assume, without loss of generality, that the horizon is discretized 

to infinitesimally small periods and thus                ]    for all  . Let      

denote expected user dissatisfaction as expressed by (1) for initial inventory level     . 

Let us define the marginal dissatisfaction function from additional units of initial 

inventory as 

                    

Clearly, this marginal value function is a discrete counterpart of the differential in a 

continuous function. Equivalently, if       is a non-decreasing function, then      is 

said to be convex. 

We start by considering the case of impatient users, i.e., users who abandon the 

station if they cannot get service right away. While this is probably not the reality of  
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most BSS,   it may very  likely be a good approximation since  users may abandon the 

station and seek service at  neighboring stations if the rental station network is dense.  

Theorem 1: If for all possible realizations for all        ,           for all     

and         for all     , then the UDF,     , is a convex function of the initial 

inventory   . 

Proof: The outline of our proof is as follows. First note that since the expected user 

dissatisfaction is obtained as a weighted sum of the user dissatisfaction over all possible 

realizations,  it is enough to show that the total user dissatisfaction is convex for any 

particular realization. Next note that the total dissatisfaction for a given realization is a 

weighted sum of four components, namely: 

1. number of potential renters that abandon the station  

2. number of potential returners that abandon the station  

3. total waiting time of renters 

4. total waiting time of returners 

However, since the users are all impatient, the last two components disappear. 

Hence, it is enough to show that the first two are convex functions of the initial inventory 

in any given realization.  For a fixed realization,  let us denote these quantities by 

            and let       denote the station’s state at time period   where     .  

Consider the state of two hypothetical systems under the same demand realization 

that differs by their initial inventory level by one unit. Let us follow the process      

   and      . If         and           for all   {     } then, there are no 

abandonees in either system and thus                 for all  . However, if at 

some period abandonment occurs in one of the processes then, from this period on, the 

two processes coincide. Consequently, the difference between the numbers of abandonees 

in both systems is at most one. For a given scenario there are three alternatives: 

1. If       hits 0 before         hits  , then   
        and   

      . 

2. If         hits C before       hits 0,  then   
       and   

      . 

3. If         never hits 0 and          never hits  ,  then   
       and   

      . 

 

Next, observe that   
          

         . This is due to the fact that 

        always hits 0 before          hits it. Note that it also possible that   
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and   
           or   

       
        . That is,   

     is  a non-decreasing 

function and so       is convex. Similarly   
            

       and thus       is 

convex.  Q.E.D. 

 

Next we consider other extreme case where the patience of the users is infinite.  

That is, the users always wait at the station until they get service. 

 

Theorem 2: If all renters (respectively, returners) always wait at the station until a 

bicycle (respectively, vacant lockers) is available, then the UDF,     , is a convex 

function of the initial inventory   . 

Proof: Note that under the conditions of the theorem,        and       are fixed in any 

given realization for all   and        . As in the proof of Theorem 1, we prove that 

the statement holds for each possible realization and thus for the expected value as well. 

In this case, since there are no abandonments, the dissatisfaction consists of a weighted 

sum of the total waiting time of renters. For a fixed realization, let us denote the total 

waiting time of renters by       and the total waiting time of returners by      . Again, it 

is enough to show that these functions are convex.    

Note that in this setting                  for all possible values of initial 

inventory       and for all       ]. 

      ∫                
 

 

 

      ∫    (         )  
 

 

  

Note that  

  
                   ∫ [   (        )     (          )]

 

 

    

Observe that   
     is equal to minus the total time over the period     ] in which 

       . That is, 

  
      ∫  {       }

 

 

    

when  { } is an indicator function. 



 

 

10 

 

Equivalently,    
       is equal to minus the duration of time in which         

 . Now, since the latter is clearly smaller (larger in absolute value),  it follows that   
       

   
     and so the convexity of       is proved. Similarly,   

     [respectively,   
      ] 

equal to the duration of time in which         [respectively,          ]. Hence 

  
          

     and the convexity of       is also proved. 

Q.E.D. 

 

We saw that the two extreme characterizations of user behavior, i.e., when all users 

are impatient and when all users have unlimited patience, result in a convex UDF. It is 

interesting to point out that this is not necessarily the case for a general user behavior 

model, i.e., when some users abandon and others choose to queue at the station. Consider 

for example the following (deterministic) arrival process with only two arrivals of renters 

and no arrivals of returners. At     an impatient renter arrives and at     a renter 

with unlimited patience arrives. It easy to observe that: 

 with      the station will not be penalized for the waiting time of users and for 

abandonments 

 with       the station will accumulate a total waiting time of     over the 

planning horizon and there will be no abandonments  

 with       the station will accumulate a total waiting time of     over the 

planning horizon and one renter will abandon.  

Now           and               . Clearly it is possible to choose 

parameter values such that             which implies that      is not convex.  

Nevertheless, we conjecture that UDF is quasi-convex. This conjecture is supported by 

the 80 numerical experiments reported in Section 5. 

 

4. Approximation of the User Dissatisfaction Function 

In this section we present a method for calculating the UDF under some sound modeling 

assumptions on the nature of the stochastic process that governs the demand at each 

rental station. In particular, we assume that arrival the processes of renter and returners 

are non-homogenous Poisson processes with rates denoted by     and    respectively.  
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A renter who arrives at the station at time   decides with probability        to join 

the queue at the station and wait for service and to abandon the station with probability 

         .        is assumed to be a non-decreasing function of the current system state,  

  , and          for     . This reflects the fact that the tendency of a renter to join the 

line is determined by her expected waiting time, which is affected by the particular time 

of her arrival and the current length of the queue. If a renter arrives at the station when 

bicycles are available, she will certainly join the (empty) queue.  

Similarly, a returner who arrives at the station at time   decides with probability 

       to join the queue at the station,        is non-increasing in   .  For      , we have  

         because if vacant lockers are available, the returner will use one. Otherwise, 

he may either queue at the station or search for a vacant locker at a neighboring one. 

The state of the station can be viewed as a non-time-homogenous birth and death 

process depicted as a Markov chain in Figure 1. The birth rate is    for all states,   , in 

which vacant lockers are available at the stations (hence         ) and          for 

    . Similarly, the death rate is           for      and    otherwise. 

 

 Note that this process admits no steady state and that we are interested in its 

dynamics. Let        denote the probability of the station being at state   at time   

providing that its initial state at time 0 was  . We use the notation      to refer to the 

whole transition probability matrix. It is possible to state the UDF in terms of the 

transition probabilities as follows: 

-2 C+

1 

C 1 0 C+

2 

-1 
          

𝜆𝑡 𝜆𝑡 𝜆𝑡 𝜆𝑡 𝜆𝑡𝜎𝑡 𝐶  𝜆𝑡𝜎𝑡 𝐶     𝜆𝑡𝜎𝑡 𝐶     

 

𝜇𝑡 𝜇𝑡 

  

𝜇𝑡 𝜇𝑡 

      

𝜇𝑡𝛽𝑡    𝜇𝑡𝛽𝑡     𝜇𝑡𝛽𝑡     

Queue of returners Queue of renters 

 

Figure 1: Continuous time Markov chain that represents the dynamics of the bicycles inventory Level 
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      ∫ ( ∑       [ 
   (       )     ]

 

    

 

 

 ∑      [ 
   (       )         ]

 

   

)    

(3) 

 

The first summation term in the integral represents the expected user dissatisfaction 

accumulated when the station is empty. During such a period, abandonments occurred at 

a rate of   (       ) and each bears a penalty of   . In addition, the total waiting time 

of renters is accumulated at a rate that is equal to the queue length,   . The second 

summation term represents the expected user dissatisfaction that accumulates when there 

are no vacant lockers at the station. During such a period of time, abandonments occurred 

at a rate of   (       ) and each bears a penalty of   . In addition the total waiting 

time of returners is accumulated at a rate that is equal to the queue length,      . 

The computationally challenging part of evaluating (3) is the calculation the 

transition matrix     . There is no closed form solution for the dynamics of this system. 

In addition, it is important to note that no insight can be gained from a steady state 

analysis of some simplified version of the system, such as one with a homogenous arrival 

process. This is mainly because when the system is properly operated, it never 

approaches a steady state. Instead, its operator regulates the inventory level and 

periodically sets it at levels that are in general very far from the steady state mean ones to 

which it will deteriorate if left untouched. Next, we present a procedure to estimate (3) 

using discretization and truncation of the Markov chain in Error! Reference source not 

found.. In the next section we validate this procedure by comparing it to a simulation that 

requires numerous replications and is thus much more demanding computationally. 

We observe that the transition probabilities to extreme states, i.e., ones that are 

much below 0 or above C, are very small. There are two reasons for this: (1) the tendency 

of users to join the queue decreases as the length of the line increases. Indeed, since the 

user may have other alternatives, such as seeking a bicycle or vacant locker at another 

station the length of queues must be bounded; (2) renters are unlikely to form long 

queues at that time of day when the arrival rate of returners at the station is low relative to 
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the arrival rate of renters because at such time they expect that the waiting time will be 

very long. In addition, when the arrival rate of returners is relatively high, a queue of 

renters is unlikely to develop even if the renters are willing to queue. A similar argument 

for the unlikeliness of a long returner queue also holds.  These observations allow us to 

truncate extreme states from the Markov chain, which enables us to base our calculations 

on a finite number of states.  

Next, we claim that while the arrival rates of renters and returners is non-

homogenous over time, it is reasonable to assume that these rates change in a finite 

number of steps over a planning horizon of, let us say, every 15 or 30 minutes. This 

modeling assumption can be justified merely by the fact that it is typically impossible to 

estimate the rates reliably for shorter periods. 

Now our strategy to estimate       is as follows. We discretize the planning 

horizon into short periods of one minute each. Let   denote the length of such a period. 

For each period  ,  we evaluate the transition probability matrix from the beginning of 

the period to its end. We denote this transition probability by   . Now the transition 

probability matrix from time 0 to time       is given by 

     ∏  

 

   

  

Moreover, using the recursive relation                   one can calculate all 

the transition matrices      for             in only   matrix multiplication 

operations once the values of     are estimated. Recall that since the arrival rates are 

constant during each period  , the        where   is the transition rate matrix of the 

Markov chain in Figure 1 with transition rates that correspond to time  . An 

approximation of     can be obtained by the identity 

      
   

(  
 

 
)
 

  

 

This limit can now be well approximated by calculating (  
 

 
)

 

  [see, for example 

Ross (2010), Section 6.8].   

Based on the approximate value of     , we can obtain a reliable approximation of 

the user dissatisfaction function using the following discretization procedure  
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      ∑ ( ∑            [    (       )     ]

 

    

 
 
  

   

 ∑            [    (       )         ]

 

   

)   

(4) 

where    (respectively,  ) denotes an upper bound on the length of the queue of renters 

(respectively, returners). The approximation procedure is parameterized by     and  .  

Clearly, as       and     the approximate value approaches      but the 

computational effort increases. Note that we use the transition probability to the midpoint 

of each discretized period as a measure of continuity correction.  

 In the special case, when users are assumed to have no patience at all and thus 

abandon the system if they cannot obtain a bicycle or a locker right away, the infinite 

number of states that represents users waiting in the queue can be safely truncated and a 

more accurate approximation is obtained by a simplified version of (4) 

      ∑                                 

 
 
  

   

   (5) 

 We note that while the no-patience assumption is not realistic in such a service 

system, we believe that such a modeling assumption is useful in deriving a nearly optimal 

initial inventory. Indeed, the UDF that is calculated in (5) ignores the potential waiting 

time of users but at the same time increases the number of abandonments. The merits of 

using this model are clear:  

 one can use this model without estimating the tendency of users to abandon (  

and  )  

 the model can be calculated much more accurately 

 a lower and upper bound on the estimation error can be constructed as 

demonstrated below 
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      ∑(   (               )     

 
 
  

   

    (               )     )  

(6) 

 

      ∑(   (               )     

 
 
  

   

    (               )     )  

(7) 

 

 Inequalities  (6) and  (7) are valid due the fact that during each period  , the rate 

of both renters and returners abandonments accumulation is monotonous, either non-

increasing or non-decreasing depending on the relation between    and   . For example, 

if the renter arrival rate is greater than the returner arrival rate,       , the probability 

of the station being empty,       , increases during the period while the probability of 

the station being empty,        decreases. Calculating the number of abandonments 

based on the lower probability between the results in a lower bound while using the 

higher probabilities results in an upper bound.  

In Figure 2 below, we illustrate the effectiveness of the bounds described above. 

The UDF presented in the figure is for a 20-hour period (6am-2am) at one of the busiest 

stations of Capital Bikesharing in Washington DC, a station with 15 lockers. The arrival 

rate of users was estimated based on data collected in the station during weekdays in the 

winter of 2010-2011. The average number of arrivals and returners per day during this 

period was 60.88 and 65.12 respectively. The computation was based on time 

discretizations of 15 and 5 minutes. Since the cost of abandoment of types was set to one 

         , the y-axis represents the expected number of user abandoments per day. 

One interesting observation from the graphs is that although the station faces, on 

average, a similar number of renters and returners, it is best to set the initial inventory of 

the station at almost empty. This is due the the fact that most of the returners arrive in the 

morning while most of the renters arrive in the afternoon, as can be observed in Figure 3. 

This is a typical situation for many stations that are located in city centers. 
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Figure 2: UDF and bounds, assuming users with no patience with discretization levels of 5 and 15 minutes 

 

 

Figure 3: Renters and returners arrival rate at a station 

It is possible to bound (4) in similar way to (6) and (7). That is 

      ∑ ( ∑    (               ) [    (       )     ]

 

    

 
 
  

   

 

 ∑   (               ) [    (       )         ]

 

   

) 

(8) 
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(9) 

But,  since the approximation of these expressions is affected also by the state truncation, 

it is impossible to use them for explicit calculation of valid bounds. 

The computationally demanding part of (4)-(7) is the approximation of     . This 

calculation requires numerous matrix multiplications that can be implemented very 

efficiently and effortlessly using specialized mathematical packages such as Matlab™  or 

the open-source package Octave.  

As discussed above, if users are patient, we had to truncate the Markov chain and 

remove states that represent long queues, which are unlikely to occur during the period 

    ].  Observe that for state    , the probability that the next state will be     is 

approximately         (          )  [this statement is exact if arrival rates are 

constant]. Now if this probability is small enough, the process is unlikely to arrive at state 

   . Furthermore, since      is non-increasing, if it ever arrives at this state it is likely to 

return to state   in a short time. Hence we truncate from the left side of the chain (queue 

for bicycles) all the states that admit          (          )    for some small 

positive number  . Similarly from the right hand at the states that admit         (   

       )    are truncated.  

 

5. Numerical Results  

The goal of the numerical study in this section is to demonstrate the efficiency and 

effectiveness of the approximation method presented in Section 4. This goal is 

accomplished by comparison to the presented bounds and to the results obtained by 

simulation. 

Our experiments are based on data collected from ten of the busiest stations in the 

“Capital Bike-Share” program which operates in Washington, DC and Arlington, VA. 
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The capacity of these stations ranges from 11 to 27 and the total daily demand for 

bicycles ranges from 30 to 60. Since less than 1% of the demand in these stations occurs 

between 2 am and 6pm,  we decided to ignore this demand and allotted these hours to the 

replenishment tasks. The UDF is calculated for 6am to 2am (          ).   

We estimated the demand rate for bicycles and lockers at each hour during the day 

in regular weekdays (Money-Thursday, excluding holidays) based on demand data 

collected by the system during a three-month period starting on November 1, 2010. We 

note that the data is censored because the demand for bicycles (respectively, lockers) is 

not recorded during periods in which the station is empty (respectively, full). We 

employed standard statistical methods to overcome this difficulty. The data on the 

estimated demand rate for each station and for each hour of the day is available from the 

authors upon request. We assumed the arrival process is a Poisson one. 

Demand during this period was particularly low since the Capital Bikeshare system 

was in its early stages and weather conditions were harsh due to the Washington winter. 

Consequently, we created 10 additional instances with the same demand patterns and 

station capacities multiplied by three. The capacities of the inflated stations range from 

33 to 81 and the daily demand for bicycles ranges from 90 to 180. These demand rates 

and station sizes are similar to those in the busiest stations of mature BSSs such as the 

Paris-based Velib, a large-scale public bicycle sharing system  (from whom we could not 

obtain detailed demand data).  The ten original stations are denoted below by serial 

numbers 1-10 and the ten inflated stations are denoted by 1*-10* respectively.  

In all the experiments, the penalty cost associated with abandonment was set to 

         per occurrence with a penalty of          per waiting hour. The 

likelihood that a user will join the queue is modeled as follows. Each user has her own 

level of patience expressed in terms of the expected time that she is willing to wait. If, on 

arriving at the station, the expected waiting time is shorter than the user’s patience, she 

will join the queue and wait to be served. Otherwise, she will immediately abandon the 

station. The patience of the user is assumed to be identically distributed with known 

parameters. For our numerical experiment, we checked three patience distributions:  

exponential distributions with a mean of ten minutes (long patience); two minutes 

(shorter patience); and impatient users who abandon the station if the service cannot be 

http://en.wikipedia.org/wiki/Bicycle_sharing_system
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provided immediately. The values of        and        were calculated accordingly. We 

could not verify this user behavior model because the “Capital Bike-Share” system does 

not collect information on waiting times and abandonments.  The probability of a renter 

with mean patience   who arrives at the station at period   to join the queue when its 

state is     is given by 

          (
    

  
) 

where   is the cumulative distribution function of the exponential distribution with  . 

Similarly, for    ,  

          (
     

  
)  

In fact, more accurate calculation should be based on the rate of the returns and rentals 

not only during the current period,  , but also during future periods but such a 

complication is not needed for our proof of concept here.  

A truncation parameter          was selected and our simulation study 

confirmed that this choice is appropriate. 

In total, 120 problem instances were tested: 20 stations (ten original and ten 

inflated)   2 discretization levels                    3 users’ mean patience 

(                      ). Each of these 120 instances was solved by our 

method. The 40 instances that correspond to the impatient case (   ) were compared to 

the lower and upper bounds, (6) and (7). The 80 instances that correspond to patient users 

(                  ) were compared to the results obtained by simulation. The 

calculation of (4) and the simulation was programmed in MathWorks Matlab™ the code 

is available from the author by request. All the experiments were run on an Intel Core i7 

™ desktop under Windows 7 ™ 64 bits. 

In Table 1 we present the results of our experiments for the impatient case. The 

expected dissatisfaction function was approximated for each of the 20 stations with both 

discretization levels. Each station is described by its capacity and expected daily demand 

for bicycles / lockers. For each run we reported on:  

 the computation time (in seconds) including the calculation of the bounds (CPU 

time) 
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 the maximum relative difference between either the lower or upper bounds over all 

possible initial inventory levels (Max Error) 

 the average relative difference between the bounds divided by two (Average Error) 

 the maximum relative difference between the values approximated by the two levels 

of time discretization (Max Diff.) 

Let us denote an approximated UDF using a discretization of level of   minutes by 

     . Its lower bound is obtained with the same discretization level by        and the 

upper bound by       . The above quantities can be formally defined as follow: 

 

             {    
  {     }

(
            

     
)     

  {     }
(
            

     
)} 

              
∑               ]       

   

      
 

              
  {     }

|
           

     
| 

Station 
 

5 Minutes Discretization 1 Minute Discretization Max Diff. 

ID Capacity Daily 
demand 

CPU time 
(sec.) 

Max 
Error  

Average 
Error 

CPU time 
(Sec.) 

Max 
Error 

Average 
Error 

1 15 31/26 0.047 2.80% 2.32% 0.199 0.56% 0.46% 0.01% 

2 11 32/44 0.048 2.77% 1.98% 0.196 0.55% 0.40% 0.01% 

3 15 32/36 0.047 2.42% 2.06% 0.195 0.48% 0.41% 0.01% 

4 15 36/33 0.046 2.21% 1.93% 0.199 0.44% 0.39% 0.01% 

5 27 37/39 0.058 2.66% 2.17% 0.239 0.53% 0.43% 0.01% 

6 15 38/41 0.043 2.20% 2.00% 0.191 0.44% 0.40% 0.01% 

7 11 40/38 0.041 1.75% 1.25% 0.19 0.35% 0.25% 0.00% 

8 19 45/42 0.049 2.77% 2.17% 0.211 0.55% 0.43% 0.01% 

9 15 52/42 0.048 2.78% 2.34% 0.204 0.54% 0.47% 0.01% 

10 15 61/65 0.045 3.59% 2.92% 0.2 0.70% 0.58% 0.01% 

1* 45 92/78 0.087 5.00% 3.49% 0.3 0.97% 0.70% 0.02% 

2* 33 95/131 0.081 3.68% 2.61% 0.264 0.72% 0.52% 0.02% 

3* 45 95/109 0.094 4.33% 3.43% 0.312 0.85% 0.69% 0.04% 

4* 45 108/99 0.092 3.88% 3.13% 0.314 0.76% 0.63% 0.02% 

5* 81 110/116 0.23 4.49% 3.24% 0.669 0.86% 0.65% 0.02% 

6* 45 114/122 0.133 3.49% 2.94% 0.311 0.68% 0.59% 0.03% 

7* 33 120/115 0.067 2.92% 2.03% 0.349 0.58% 0.41% 0.02% 

8* 57 134/126 0.097 4.63% 2.91% 0.365 0.89% 0.58% 0.03% 

9* 45 157/127 0.084 4.13% 3.17% 0.311 0.79% 0.63% 0.04% 

10* 45 183/195 0.081 5.53% 4.08% 0.289 1.05% 0.81% 0.06% 

Avg.   0.076 3.4% 2.61% 0.275 0.66% 0.52% 0.02% 

Table 1: Results for the model with no patience 
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 It is apparent from Table 1 that instances of the impatient case could be 

approximated very quickly by the proposed method. Although the solution time increased 

with discretization level and station capacity, even the largest instance, corresponding to 

a station with 81 lockers and time discretization of one minute, could be solved in 0.669 

seconds.   

The approximation accuracy seems to improve significantly as the discretization 

level increased. For example, the average Max Error for one minute discretization was on 

average about fifth of that obtained by a five minute discretization.  However, this 

improvement is mainly due to the tightening of the bounds rather than actual changes in 

the approximated values. Indeed the maximum relative difference between the two 

methods is, on average, merely 0.02%. We concluded that the method is fairly accurate, 

even with a time discretization of five minutes. Thus, if there is a need to solve numerous 

instances of the problem quickly. For example, in an on-line setting, it is possible to use 

rougher time discretization in order to save time. Furthermore, it is unlikely that further 

refinement of the discretization will lead to a significantly more accurate approximation.  

  Next, the performance of the approximation method for a model that assumes 

users with limited patience was tested. For each instance and each possible initial 

inventory            we also ran a simulation with 10000 replications in order to 

create the whole UDF.  For each of the 20 tested stations Table 2 presents:  

 the computation time in seconds required for the approximation procedure  (cpu 

time) 

 the maximal and average relative difference between the mean results of the 

simulation  (Max Diff. and Avg. Diff) 

 the percentage of the results obtained by the approximation results that are outside a 

99% confidence interval created based on the simulation  (Outside C.I) 

The above results are reported for both one and five minute discretization level. 

Formally, let us denote the mean value of      obtained by the simulation by  ̅    and 

the half with of the confidence interval corresponds to this point by      then  

             
  {     }

| ̅        |
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where  { } is an indicator function. 

 

Station 5 Minutes Discretization 1 Minute Discretization 

ID Capacity 
Daily 

demand 

CPU time 

(sec.) 

Max 

Diff. 

Avg. 

Diff. 

Outside 

C.I 

CPU time 

(sec.) 

Max 

Diff. 

Avg. 

Diff 

Outside 

C.I 

1 15 31/26 0.064 0.98% 0.32% 0.00% 0.292 0.98% 0.31% 0.00% 

2 11 32/44 0.144 0.63% 0.37% 0.00% 0.683 0.62% 0.37% 0.00% 

3 15 32/36 0.063 1.80% 0.54% 0.00% 0.304 1.79% 0.53% 0.00% 

4 15 36/33 0.071 1.41% 0.55% 0.00% 0.329 1.39% 0.55% 0.00% 

5 27 37/39 0.094 3.80% 1.00% 0.00% 0.462 3.79% 1.00% 0.00% 

6 15 38/41 0.089 1.77% 0.52% 0.00% 0.422 1.78% 0.53% 0.00% 

7 11 40/38 0.06 0.95% 0.46% 0.00% 0.286 0.94% 0.47% 0.00% 

8 19 45/42 0.062 1.11% 0.38% 0.00% 0.299 1.09% 0.38% 0.00% 

9 15 52/42 0.113 0.83% 0.33% 0.00% 0.55 0.85% 0.33% 0.00% 

10 15 61/65 0.195 0.92% 0.36% 0.00% 0.935 0.89% 0.35% 0.00% 

1* 45 92/78 0.136 3.60% 0.78% 2.17% 0.644 3.65% 0.79% 2.17% 

2* 33 95/131 0.488 0.54% 0.17% 0.00% 2.392 0.52% 0.16% 0.00% 

3* 45 95/109 0.285 3.11% 0.56% 2.17% 1.327 3.14% 0.56% 2.17% 

4* 45 108/99 0.193 2.81% 0.79% 0.00% 0.912 2.77% 0.79% 0.00% 

5* 81 110/116 0.651 12.73% 1.63% 2.44% 4.679 12.79% 1.63% 2.44% 

6* 45 114/122 0.339 1.60% 0.50% 0.00% 1.614 1.57% 0.49% 0.00% 

7* 33 120/115 0.213 2.32% 0.51% 2.94% 1.027 2.34% 0.51% 2.94% 

8* 57 134/126 0.303 2.65% 0.47% 5.17% 1.41 2.70% 0.46% 5.17% 

9* 45 157/127 0.399 0.81% 0.26% 0.00% 1.924 0.74% 0.24% 0.00% 

10* 45 183/195 0.635 0.85% 0.27% 0.00% 3.095 0.80% 0.27% 0.00% 

Avg.   0.23 2.26% 0.54% 1.23% 1.18 2.26% 0.54% 1.23% 

Table 2: Results for the model with     min. 

 

In Table 3, the same information is presented assuming the mean patience of users 

is ten rather than two minutes, i.e., the tendency of users to wait for service in the station 

is higher. The structure of this table is identical to the structure of Table 2. 

 

Station 5 Minutes Discretization 1 Minute Discretization 

ID Capacity 
Daily 

demand 

CPU time 

(sec.) 
Max Diff. 

Avg. 

Diff. 

Outside 

C.I 

CPU time 

(sec.) 

Max 

Diff. 

Avg. 

Diff 

Outside 

C.I 

1 15 31/26 0.214 1.54% 0.58% 0.00% 1.05 1.55% 0.58% 0.00% 

2 11 32/44 0.777 0.93% 0.26% 0.00% 3.679 0.94% 0.26% 0.00% 

3 15 32/36 0.449 1.95% 0.49% 0.00% 2.089 1.96% 0.49% 0.00% 

4 15 36/33 0.321 1.32% 0.56% 0.00% 1.578 1.32% 0.56% 0.00% 

5 27 37/39 1.351 2.66% 0.81% 0.00% 3.03 2.64% 0.81% 0.00% 
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6 15 38/41 0.56 1.48% 0.59% 0.00% 2.733 1.47% 0.59% 0.00% 

7 11 40/38 0.316 1.07% 0.53% 0.00% 1.544 1.07% 0.53% 0.00% 

8 19 45/42 0.575 1.69% 0.42% 0.00% 4.242 1.71% 0.42% 0.00% 

9 15 52/42 0.588 1.51% 0.36% 6.25% 2.86 1.53% 0.37% 6.25% 

10 15 61/65 1.037 1.00% 0.37% 0.00% 5.084 1.02% 0.37% 0.00% 

1* 45 92/78 1.058 2.73% 0.67% 2.17% 3.435 2.74% 0.67% 2.17% 

2* 33 95/131 3.365 0.74% 0.16% 2.94% 15.368 0.74% 0.15% 2.94% 

3* 45 95/109 1.739 2.01% 0.73% 2.17% 8.149 2.04% 0.73% 2.17% 

4* 45 108/99 1.213 2.94% 0.81% 2.17% 5.516 2.92% 0.81% 2.17% 

5* 81 110/116 4.332 8.86% 1.69% 2.44% 20.325 8.92% 1.69% 2.44% 

6* 45 114/122 2.309 1.52% 0.41% 0.00% 10.68 1.48% 0.40% 0.00% 

7* 33 120/115 1.138 1.31% 0.43% 0.00% 7.567 1.32% 0.43% 0.00% 

8* 57 134/126 1.787 1.74% 0.42% 0.00% 8.373 1.70% 0.41% 0.00% 

9* 45 157/127 2.79 0.96% 0.22% 0.00% 1.05 1.55% 0.58% 2.17% 

10* 45 183/195 7.786 1.18% 0.24% 0.00% 3.679 0.94% 0.26% 0.00% 

Avg.   1.69 1.96% 0.54% 1.07% 7.38 1.95% 0.54% 1.23% 

Table 3: Results for the model with      min. 

 

Several observations are derived from Table 2 and Table 3. Most important, it 

seems that the results for all the 80 instances and for all the possible initial inventory 

levels nicely agree with the simulation results with mean relative deviations of merely 

0.54%. Moreover, the results obtained from the approximation procedures fall in all but 

1.19% of the cases within a 99% confidence interval constructed by the simulation 

results. Note that these cases can be attributed to an estimation error of the simulation 

rather than an approximation error of the algorithm. Indeed, in 1% of the cases, the true 

value is expected to fall outside a 99% confidence interval. 

The strongest inconsistency between the approximation algorithm and the 

simulation occurred at station 5* in regard to both patience and discretization levels. We 

drilled down into the results of these instances in order to obtain a better understanding of 

what was taking place. Error! Reference source not found. presents the UDF, as 

approximated by (4), and the lower and upper bounds of the 99% confidence interval 

created by the simulation. One can observe that while the graph of the approximated 

function crosses the confidence interval twice, its overall trend is very similar to the 

estimation obtained by the simulation and is very likely to lead to the same decision 

regarding the optimal initial inventory. Indeed, the greatest difference between the 

optimal initial inventory prescribed by the simulation and the one prescribed by the 

approximation procedure, is, in all the 80 experiments, one bicycle. Moreover, even in 

these cases the relative difference between the expected value of the solution based on 
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these two methods, when measured according to the approximation procedure, never 

exceeds 1.24%. 

It is also apparent from all our experiments that the results obtained with five-

minutes discretization is very similar to those obtained by a one-minute discretization 

while the running time increased proportionally with the discretization level (the number 

of periods per hour). This implies that if computation time is a consideration, it is better 

to use rough rather than fine discretization. 

 Figure 4: Approximation algorithm vs. simulation results. Station 5*,     , discreetization level 1 minute 

 

Finally, we compared the results obtained by the model with     and      in 

terms of optimal initial inventory levels. It seems that the two models prescribe very 

similar optimal initial inventory levels. Indeed, in 18 out of 20 cases, the same solution 

was obtained while in two cases (station 6* and 10*) there was a difference of one 

bicycle. In both of these cases, the relative difference in the value of the UDF (in terms of 

     model) was less than 0.2%. We conclude that the impatient (     model can be 

safely used as a surrogate for the more detailed model that allows users to wait at the 

station.  
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6.  Discussion  and Conclusions 

This paper presents an inventory model for bike rental stations. This model may be used 

by operators of BSS in their daily operations while rebalancing their system. Moreover, 

the convexity property together with the efficient approximation method and the 

observation that the impatient user model can be used as a surrogate for the more general 

(but not necessarily convex) model make the results of this study very useful for various 

operational and strategic decisions that may be made by the BSS operators. In particular, 

the inventory model may serve as a building block for modeling the following problems: 

optimal station capacity; optimal global bicycle inventory; and the static repositioning 

problem. These problems and their relation to the inventory model are briefly discussed 

below.  

Optimal Station Capacity: Consider a BSS operator with a repositioning fleet that 

allows replenishing stations every fixed interval,  , say every night or twice a day. Let us 

redefine the UDF (3) as a function of the station capacity,  , and initial inventory,  , 

      . Next, let      denote the cost of deploying a rental station with   lockers. If 

user dissatisfaction can be expressed in monetary value and       is amortized,  in terms 

of the inter replenishment period  , then                    is the total cost 

associated with installing   lockers and set the initial inventory level to  . Since we now 

possess an efficient approximation method for        , it is possible to find the optimal 

combination of      , at least within a bounded range of    merely by enumerating all 

possible values. It is interesting to study the properties of       . We note that it is 

reasonable to assume that      is concave due to economies of scale. In such a case, 

convexity of        implies convexity of       .  

If it is not possible to express user dissatisfaction and/or station capacity costs in 

common monetary units, one can still plot an efficiency frontier with station size on one 

axis and UDF, assuming optimal initial inventory, on the other. This would enable the 

decision-maker to pick one Pareto optimal solution. 

Optimal Global Bicycle inventory: The decision about the optimal number of 

bicycles in the system is a crucial tactical decision that should be reviewed by the 

operator whenever demand patterns or station capacity change. Clearly, if the global 
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inventory is too low the renter is more likely to face bicycle shortages; if it is too high, 

the returners are apt to face a shortage of lockers.  

Let us denote the cost associated with purchasing and maintaining,  , bicycles in 

the system, amortized to the replenishment period   by       Let    (resp     denote the 

optimal initial inventory (respectively capacity) of station  . Now the following 

mathematical model can be used to determine the optimal system wide bicycle inventory. 

   ∑                 ]

 

   

      (10) 

s.t 

∑  

 

   

   (11) 

 

          (12) 

If the capacity of the stations can be changed simultaneously with the global 

inventory level,     can be regarded as decision variables rather than parameters. While a 

solution method for the non-linear integer program (10)-(12) is a topic for future 

research, the proposed efficient approximation method for the UDF may be instrumental 

in any such method. Since the demand patterns change seasonally, it is recommended that 

the operator will have a storage capacity to allow addition and removal of bicycles 

to/from the system as needed.  

Repositioning: Preliminary results of this study were used by Raviv, Tzur and 

Forma (2011) to formulate a mixed integer linear model for routing inventory in order to 

rebalance stations using a fleet of vehicles subject to capacity and time constraints. The 

sum of the UDFs of all stations is incorporated into the objective function of the 

repositioning model rather then used to prescribe target inventory levels. This approach 

takes advantage of the fact that the UDF is typically flat around the optimal level and thus 

in many cases it is not worthwhile to visit a station that is off but near its optimal 

inventory level. A future challenge is to solve the dynamic repositioning problem with 

the objective of minimizing the total user dissatisfaction. However, in the dynamic case, 

the exact time of the next visit at the station is unknown because it depends on the future 
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state of the system. Hence, some adaptation may be needed to allow the function to 

handle   as a random variable that depends on the initial inventory. 

 We believe that the single station inventory model presented in this paper may be 

very useful for BSS operators. However, like any mathematical model, it is based on 

some simplified assumptions. In particular, the model presented here abstracts out 

complex interdependencies among the different stations. In fact, we see two types of such 

interdependencies. First, the demand process at each station may be affected by the state 

of its neighboring stations since unsatisfied renters and returners are likely to go to other 

stations. Second, the arrival processes of returners at destination stations are affected by 

the state of other origin stations. Indeed, if a renter decides to abandon Station   because 

it is empty, she will never be a returner at her presumed destination  . Moreover, in the 

long run, the service level experienced by users affects their demand in future periods 

since disappointed users are less likely to use the system again. In conclusion, we believe 

that future researchers should create detailed and empirically supported user behavior 

models. Such a model is unlikely to be efficiently computable but studying it by 

simulation may help to validate and fine tune the model presented here.  

BSS operators generally sign service level agreements with the municipal 

authorities. In some of these agreements the service level is defined as the percentage of 

the time in which the station is allowed to be completely empty or completely full. For 

example, the operator may be committed to ensuring that none of the station will be at 

such states more than 5% of the time in each day. The parties agree upon a penalty for 

each breach of this commitment. We believe that this is an inaccurate measure for service 

level.  The service level is affected not only by the length of the periods in which the 

station cannot provide the service but also and more importantly by the timing of these 

periods. For example, an empty station next to a high school just before the beginning of 

the school day is desirable because such a station can accept the expected wave of 

returners. However, if the same station is empty in the afternoon, just before the end of 

school day, it is likely to provide a poor service for the expected wave of renters. Hence, 

we argue that the number of unsatisfied renters and returners is a more appropriate 

service level measure and that it should be included in service level agreements between 

cities and BSS operators. Indeed, this measure cannot be calculated accurately but it can 
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be easily estimated from the system log. However, If the operator does interested in 

minimizing the length of the period in which the station is empty or full, the definition of 

the UDF in (3) should be modified to 

      ∫ ( ∑       

 

    

 ∑      

 

   

)
 

 

    

The adaptation of the approximation formulas, (4) and (5), is straightforward. 

Finally, we would like to point out that the sharing economy is not limited to shared 

mobility systems. While the concept of renting equipment instead of buying it is not new, 

modern information technology makes it a very attractive alternative. For example, 

construction firms may prefer renting power tools and machinery at the time and location 

where they need them instead of owning and transporting them. Similarly, some 

individuals may prefer renting camping equipment in order to save the need to store it at 

their apartments, etc. Managing the supply chain of a multi-branch renting organization is 

a challenging task compared to a retail organization due to the need to cope with the 

dynamics of at least two incoming streams of goods: returned items and items acquired 

vertically or horizontally from other echelons.  The literature on reverse logistics is 

extensive but primarily focused on systems with items that must be reprocessed in some 

way before being delivered again. However, in the rental business, returned items can be 

used again immediately after they are returned. Modeling such systems requires 

integrating inventory and queuing models. Hence, we believe that the modeling concepts 

and solution methods presented in this paper may be relevant for many problems 

originating from the growing sector of renting/sharing organizations. 
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