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ABSTRACT 

This paper identifies the prospective role of a range of intelligent transport systems 

technologies for the signal control of road traffic. We discuss signal control within the context 

of traffic management and control in urban road networks, and then present a control-

theoretic formulation for it that distinguishes the various roles of detector data, objectives of 

optimisation, and control feedback. By reference to this, we discuss the importance of 

different kinds of variability in traffic flows, and review the state of knowledge in respect of 

control in the presence of different combinations of them. In light of this formulation and 

review, we identify a range of important possibilities for contributions to traffic management 

and control through traffic measurement and detection technology, and contemporary flexible 

optimisation techniques that use various kinds of automated learning. 
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1.  INTRODUCTION 

Traffic signals are used to manage conflicting requirements for the use of road space – often 

at road junctions – by allocating right of way to different sets of mutually compatible traffic 

movements during distinct time intervals. This mode of allocating exclusive use of road space 

to different contending sets of movements in turn confers a special structure on the 

operational requirement for traffic signals: this has the discrete element of the order in which 

mutually incompatible movements receive right of way, and the continuous one of the 

duration for which this occurs. The objectives of signal control will vary in accordance with 

the prevailing policy of urban traffic management and control. However, for a specific 

objective, the control task is to calculate and implement a series of control decisions that 

promotes this objective, and ideally that optimises it. The resources that are available for this 

optimisation are data from detectors – either collected in advance or on-line or in some 

combination of these – and optimisation procedures to make use of these data to calculate the 

plan. 

If traffic flows were constant over time and known in advance, then calculation of signal 

timing plans to optimise a specified objective would be a relatively straightforward matter. 

However, traffic flows vary in several distinct ways that make the control task substantially 

more complicated. In particular, flows vary stochastically from moment to moment due to 

fluctuations in demand and driver behaviour; flows in urban road networks vary cyclically 

over time due to upstream signals; flows vary systematically within each day due to peak 

periods; and flows change over protracted periods of time due to developing demand for 

travel. In practice, each of these separate reasons will apply to some degree. However, each of 

them affects the control of road traffic in different ways, so we will consider their treatment 

separately. 

In this paper, we present a general formulation for the calculation of signal timing plans as a 

kind of optimal control problem (see, for example, Kamien and Schwartz, 1991). This 

provides a framework within which a wide literature is unified. This then highlights the roles 

of information that can be provided by detectors, of measures of performance, and of 

optimisers that calculate signal timings plans using the data that are available. From this 

review, we can identify the potential of techniques of intelligent transport systems (ITS) to 

support urban traffic management and control though signal control of road traffic by 

providing data and processes for their use. 
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2.  SIGNAL CONTROL OF ROAD TRAFFIC 

2.1 Introduction 

We now consider in some detail the nature of signal control of road traffic. In particular, we 

identify the control decisions that are available, we discuss the objectives that can be 

promoted by signal control, and we consider in detail the data that are required for the 

calculation of control decisions under various circumstances. 

2.2 A model of signal control 

We consider the streams of traffic at a road junction that are controlled by signals. Suppose 

that each set of signals has displays that are determined by a signal controller at the junction 

that switches them between red and green, through various combinations including amber 

displays. The details of this operation will vary according to prevailing rules that specify, for 

example, minimum clearance times between mutually incompatible streams having green 

indications, the exact sequence and durations of combinations that include amber, minimum 

durations of green indications, and in some cases permissible orderings of mutually 

incompatible streams. The rules that specify these details vary between countries, and are 

generally intended to ensure safe operation that is consistent with local custom and practice. 

In general terms, the control decisions to be taken are: 

 in what order should signals be switched to give green indications; 

 for how long should each green indication persist.  

Two distinct styles of formulation have been developed for these decisions. The more 

straightforward one is to establish maximal sets of signals that control mutually compatible 

streams of traffic; these sets are known as stages. Each stream is included in at least one stage, 

and can appear in several of them. In the resulting stage-based formulation (see, for example, 

Allsop, 1971), the control decisions are taken for stages. This has the advantage of dividing 

time into a series intervals throughout each of which a single stage runs; these intervals are 

separated by interstage periods within which signals change between green and red.  

The second style of formulation is in terms of minimal sets of mutually compatible streams 

that are necessarily switched simultaneously; these sets are known as phases. Each stream 
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belongs to exactly one phase, but where different phases consist of streams that are all 

mutually compatible, they can receive right of way concurrently. In the resulting phase-based 

formulation (see, for example, Improta and Cantarella, 1984; Gallivan and Heydecker, 1988) 

the control decisions are taken for phases individually to specify their starting times and 

durations. This formulation is more flexible than is the stage-based one because the sequence 

of signal indications and the structure of the interstage periods are implicit endogenous 

variables. It can therefore yield substantially better control performance (Heydecker and 

Dudgeon, 1987), but this is achieved at the expense of requiring a greater number of variables 

and constraints. 

In the remainder of this paper, we consider the effect of a sequence of control decision on an 

individual stream. The present analysis can be developed within either a stage-based or a 

phase-based formulation as required. 

2.3  A model of traffic under signal control 

Various models have been developed of the way in which road traffic responds to signal 

control. In this section, we present a widely used model of this kind in a form that can be 

identified with control theory (see, for example, Kamien and Schwartz, 1992). Whilst this is 

not the only possible model, and indeed others have been investigated that provide further 

detail, this model provides sufficient detail and information for most analyses of signal-

controlled road junctions. 

Let the mean arrival rate of traffic in stream  i  at time  t  be  qi(t) , and let  ai(t) = qi(t) + εi(t)  

be the actual number or arrivals at time  t , where  εi(t)  is a stochastic error for the arrival 

process with zero mean. In the case of continuous deterministic arrivals,  εi(t) = 0 . In the case 

of road junctions in dense urban networks, the mean arrival rate  qi(t)  will often vary quasi-

cyclically with time  t  due to platooning of traffic arriving from upstream signal-controlled 

junctions. We consider this and other kinds of variability in traffic flows, their representation 

in the state equation, and approaches to exploiting knowledge of their nature in signal control 

in due course. 

At times when the signals that control a steam display red, then no traffic departs and any 

arrivals join a queue. Let the number of vehicles in stream  i  that would have departed at time  

t  but that have been prevented from doing so by current or earlier red signal indications be  
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Li(t) : this corresponds to the amount of traffic in a notional vertical queue of vehicles at the 

stop-line. The variables  Li(t)  and  qi(t)  correspond to state variables for the stream.  

Let  χi(t)  be a characteristic for effective green indications in stream  i , so that 

 ( ) �����=χ
otherwise.0

,timeatgreeneffectivehasstreamif1 ti
ti  

This quantity is used here to represent the control decisions. It is subject to constraints that 

embody the safety and operational limitations outlined in section 2.2, including ones that 

enforce safe resolution of the contention between different streams for green time. In this 

exposition we will treat this as a binary (and hence discontinuous) control variable, and will 

consider only combinations of such variables that satisfy all relevant constraints. 

Suppose that when the signals are green, if  Li(t) > 0 , then traffic will depart at a certain rate  

si  know as the saturation departure rate, and that if  Li(t) = 0 , then traffic departs as it 

arrives. This model relies upon a certain correction from displayed green indications to 

effective ones that is achieved by introducing start and end lags that typically have values of 2 

and 3 seconds respectively; with this correction, accurate estimates can be made of both 

capacity and delay by use of the effective green time and the saturation departure rate.  

This model of queue dynamics can be summarised in the state equation for queue length Li(t): 

( ) ( )[ ] ( ) ( )[ ]{ }[ ] ( ) ( ) ( )[ ]tLttstLtttq
dt

dL
iiiiiii

i Θχ−−Θχ+ε+= 11    (1) 

where  Θ(.)  is the Heaviside step function (Lighthill, 1958), specified by  Θ(x) = 0  if  x < 0 , 

and Θ(x) = 1  if  x > 0 . We note that this component of the state equation is non-linear for 

several reasons: 

the Heaviside step function is discontinuous, 

the equation includes the product  χi(t) Θ[Li(t)]  of a control variable and a function of 

a state variable, and 

the equation also includes the further product   q i(t) χi(t) Θ[Li(t)] . 

This vertical queueing model will generally underestimate the number of vehicles queueing in 

a stream of traffic because it makes no account of the space that the queue occupies, though it 

will certainly be 0 when there are no vehicles queueing. The main limitation of a model based 
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upon a vertical queue is that because it does not have any spatial content it cannot inform 

directly on blocking back between adjacent junctions: the importance of this for control or 

road networks has been emphasised by Lo (1999) and Lo, Chang and Chan (2000). 

2.4  Objectives of signal control 

Signal control can be used to promote the objectives of urban traffic management and control 

in many different ways (Wood, 1993), including both tactical considerations and more 

strategic ones. The general purpose of tactical traffic management includes ensuring good 

operation of the junction and network with current and expected arrivals of traffic. The 

purpose of strategic traffic management is broader, and includes possibilities such as 

prioritisation and promotion of different groups of travellers such as pedestrians or bus 

passengers by provision of appropriate facilities, and limitation of capacity for motor vehicles 

to manage traffic growth.  

In this section, we show how a range of traffic management objectives can be expressed 

within the framework of optimal control theory using the control and state variables 

introduced above. According to Kamien and Schwartz, the standard form of objective of 

optimal control is 

A(χχχχ, L, q) = ( ) ( ) ( )[ ] dtetttf t

t

α−
�

qL ,,χχχχ       (2) 

for some scalar function  f(.)  of the control and state variables, and discount rate  α . In case 

the evaluation horizon ends at time t = T , then an additional terminal cost  B[χχχχ(T), L(T), q(T)]  

can be associated with the final control condition and state in view of the omission of 

evaluation at any later time. 

At heavily loaded junctions, it is often desirable to match the capacity of each of the most 

heavily loaded streams to the mean arrival rate in it so as to maximise the reserve capacity or, 

if the junction is overloaded, to minimise the degree of this (Allsop, 1976). This objective can 

be expressed in terms of the state and control variables introduced above in the formulation 

( )[ ] iit

i

i stE

q

χ
MaxMinimise

χχχχ
        (3) 
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where  Et(.)  represents mathematical expectation operator over time  t . 

In cases where junctions are in close proximity, management of the spatial length of queues 

occurring at them can be important so that capacity is not lost through queues forming at one 

junction extending upstream to block exits and stop-lines at adjacent ones (Quinn, 1992). 

Other queue-related objectives include minimising the number of vehicles that remain in the 

queue at the end of an effective green period, which is known as the overflow queue. 

Formulations of signal control relating to objectives of this kind can be expressed directly in 

terms of the control variables  χχχχ(t)  and the state variables  L(t) . 

The number of vehicles in the vertical queue associated with a stream of traffic can be 

interpreted as the mean rate of delay in that stream and provides an objective that bears direct 

economic interpretation (Allsop, 1971). Where junctions are operating within capacity and 

traffic growth is not considered to be an issue, minimisation of the total mean rate of delay at 

a junction is often adopted as an objective for traffic control. This can be expressed as 

( )[ ]
�

i
it tLE�Minimise          (4) 

where the relationship between the state variables  L(t)  and the control variables  χχχχ  is 

governed by the state equation (1). In cases where for some or other reason the future queue 

lengths are uncertain, a discount can be applied within the objective of optimisation according 

to (2) to reflect this. This can be expressed as 

( )
��

α−

i t

t
i dtetL�Minimise ,        (5) 

which corresponds to optimisation of objective (2) with f [χχχχ(t), L(t), q(t)] = �i Li(t) . This 

formulation emphasises the importance of decisions to be implemented in the near future that 

affect the state promptly relative to those that are implemented later and that affect states 

afterwards on the basis that there will be a possibility to reconsider them in the future. 

Other objectives can also be represented using these control and state variables. For example, 

Robertson, Lucas and Baker (1980) showed that rate of fuel usage  F  in a stream of traffic 

can be estimated from the total rate of travel  Q , the rate of delay  L  and rate at which 

vehicles stop  S  according to  F = αQ Q + αL L + αS S  where the parameters  αααα  are 
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determined experimentally. The total rate of travel in a network with fixed demand is 

insensitive to variations in signal control. The instantaneous rate at which vehicles in a stream 

stop to join the vertical queue can be found using the state and control variables of the present 

traffic model as  

( ) ( ) ( )[ ] ( ) ( )[ ]{ }[ ]11 −Θχ+ε+= tLtttqtS iiiii .      (6) 

Accordingly, the present analysis can encompass minimisation of fuel usage within its 

framework. 

2.5  Variability in traffic flows 

We now consider ways in which traffic flows and their variability can be represented within 

the present framework. The simplest case is one in which the flows are constant and 

deterministic:  qi(t) = tqi ∀ , so that  εi(t) = 0  and the corresponding component of the state 

equation is  0=dtdqi .  Beyond this case, variability in traffic flows can arise in several 

different ways. Here we consider four different kinds of variability in traffic flows and show 

how these can each be represented in the state equation. 

The first case of variability that we consider is that in which traffic flow varies stochastically 

around a constant mean rate. In this case, the arrival rate  ai(t)  in stream  i  at time  t  can be 

expressed as  ai(t) = iq  + εi(t) . In the case of continuous traffic,  εi(t)  is continuous in time 

and represents deviation in the arrival rate from the constant mean value iq . In the case of 

discrete traffic in which vehicular arrivals form a point process at instants  ( )�∈nt i
n  , the 

error can be expressed as  ( ) ( ) i
n

i
ni qttt −−δ=ε �  , where  δ(.)  is the Dirac delta function 

(Lighthill, 1958). If arrivals are regular, then the inter-arrival headways will be determined by 

the flow as  ( )�∈=− − nqtt i
i
n

i
n 11 ; if the arrivals are stochastic, then the headways will vary 

around this value. This can be used to represent short-term variability in arrivals due to 

random fluctuations around a constant mean arrival rate. In the case of constant mean flow 

with random variations, the corresponding component of the state equation is again  

0=dtdqi . However, in this case the mean flow iq  is a hidden variable that cannot be 

observed directly: only the sum ai(t) = iq  + εi(t)  can be observed from this the mean can be 

estimated by repeated measurement of ai(t) . 
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We now consider a second kind of variation, which is the platooning of flows in road 

networks due to upstream traffic signals. This effect gives rise to quasi-cyclic profiles of flow, 

typically with high arrival rates for vehicles that passed through upstream junctions early 

during the green period there. In cases where the profile of flow  ei(t)  that enters link  i  is 

known, either by measurement or by modelling, the flow  qi(t)  arriving at the downstream 

end of the link can be estimated using the undelayed travel time  φi  for the link as 

( ) ( )iii tetq φ−= . Robertson (1969) showed how this estimation could be improved by 

smoothing the flows according to a platoon dispersion model, which in discrete time with step 

∆t can be written as 

 ( ) ( ) ( ) ( )ttqFteFtq iiii ∆−−+φ−= 1        (7) 

where  F  is a smoothing parameter that Robertson found varied with the free-flow travel time  

φi  according to F = 1/(1 + βφi)  for some parameter  β . 

The third kind of variation is that arising from systematic changes in demand for travel over a 

timescale of many minutes, as occurs within a morning peak period. This kind of variation 

can affect either discrete or continuous traffic arrivals, whether or not they are subject to 

random variations. We therefore consider it separately; its effect and treatment can be 

combined with those for other variations that are present. In this case, the mean flow  qi(t)  

follows a regular profile  Pi(t)  over time – for example, repeating each weekday. In this case, 

the flow component of the state equation is  ( )tPdtdq ii ′= : because of the periodic nature of 

the regular profile,  Pi(t) = Pi(t+p)  for some period  p . Whether or not the mean flow is 

hidden by the presence of stochastic variations in addition to the periodic ones, it can be 

estimated by repeated measurement, in this case using measurements at time  t  to estimate  

Pi [t (mod p)] . A further possibility arises in this case that the profile differs in detail between 

repetitions in the sense that similar mean flows occur but at times that do not correspond 

exactly: this can be represented as  qi(t) = Pi[t+τi(t)] , where  τi(t)  represents the stochastic 

deviation in the timing of the profile. 

The fourth kind of variation that we consider arises because of long-term development in 

mean flows due to urban development and changes in travel patterns. In this case, the flow 

component of the state equation is ( )tdtdq ii η=  for some  ηi(t)  that represents the variation 

over time of the mean flow – this is nominally an error term in the state equation. The 
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distinction between this case and the previous one is that here the variation in flow is not 

periodic, so cannot be estimated in the same way by repeated measurement: if both changes in 

mean flow and stochastic variations around the mean are present, then estimation of the mean 

flow is a problem of statistical filtering to estimate the separate effects of stochastic variation  

εi(t)  about the mean and variation  ηi(t)  of the mean (see, for example, Brown and Hwang, 

1992 for a general treatment of this topic, and Heydecker and Bressaud, 1992 for one specific 

to the analysis of data from traffic detectors). 

These four kinds of variability have been introduced separately. However, all sixteen 

(16 = 24) possible combinations of them can arise and can be analysed by appropriate 

combination of the specific analyses presented here. 

2.6  Data requirements for optimisation 

According to the analysis presented in this section, knowledge of the state variables  L  and  q  

is sufficient for optimisation of signal control within an optimal control framework. Control 

actions taken at any time  t0  will influence future states  L(t) , t > t0  as expressed in the state 

equation (1) for  L .  Furthermore, because of the rules of operation of signal controllers, 

control actions made at any time will affect the range of possible actions at future times. The 

evaluation of a control decision is made on the basis of estimated performance during the 

future, which will be affected by each of these considerations as well as by details of the 

arrivals. For this reason, some further information such as the realisation of a stochastic 

arrivals process  a(t) (t > t0) can be used to advantage in the control. 

The data requirements for optimal control are then on-line estimates of the queue lengths  L  

and of the mean flows  q . Provided that the state  L(t0)  is known at some time  t0 , the state 

equation (1) can in principle be used to calculate values at all future times from the control  

χχχχ(t)  and the mean flows  q(t) .  Furthermore, the queue length will generally return to zero 

from time to time, which if identified correctly provides an opportunity to reset the estimates 

of that component of the state. However, in practice measurement errors and stochastic 

variations in arrivals around the mean flow  q  will lead to accumulation of errors so that 

additional information will be conferred by measurements that relate to the queue lengths  L . 
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3.  ESTABLISHED RESULTS ON OPTIMISATION 

3.1  Introduction 

A substantial literature exists on optimisation of control decisions for traffic signals. In this 

section, we review these approaches within the framework that was presented in section 2. 

The intention of this is to show how each of these approaches addresses one of the four 

different kinds of variability that were introduced in section 2.5, and what their data 

requirements are. We consider these approaches in turn according to the kind of variability 

that it admits. 

3.2  Control of constant mean flows 

A large proportion of the literature on optimal control of road traffic presupposes that the 

mean flow of traffic in each steam is constant and known. Here, we review results from the 

literature, considering in turn results that apply to deterministic arrivals at the mean rate, and 

then stochastic arrivals with each of fixed and responsive control. 

Consider first the case of constant uniform arrivals at a junction where the initial queue 

lengths  L(0)  are known and possibly large. Grafton and Newell (1965) explored use of the 

rule of running each stage until queues had dissipated and then switching to the next stage: the 

argument in support of this is that until the queue dissipates, flow at the stopline will be at the 

saturation rate  s  whereas after that, it will fall to the arrival rate  q  and so will use green time 

less efficiently. They showed that under a wide range of circumstances, this rule provides 

control that minimises the mean rate of future discounted delay, corresponding to formulation 

(5). The exceptions that they noted were for cases of large queues on high capacity 

approaches occurring and small queues on low capacity ones. This rule conforms to the 

concept of feedback control because it specifies the optimal control rule in terms of the 

current value of the state variables L(t) and q(t) (Kamien and Schwartz, p262). 

In the case that the arrivals are stochastic with constant mean rate, then two distinct styles of 

operation are available: the first is to calculate and implement fixed timings that will 

accommodate stochastic variation in arrivals, whilst the second is to calculate timings on-line 

in a way that responds to detected arrivals and states. We consider these in turn. 
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Following Miller (1963a) and others, the mean rate of delay in a signal cycle starting at time  

t = 0  with initial queue length  L(0)  that consists of a red period of duration  r  followed by a 

green period of duration  g , is given to good approximation by 

( )
( ) ( )[ ][ ]

( )gr

rLrq

qs

s
D

+
+

−
=

E
0E2E

2

2

 .       (8) 

When the red and green times are fixed, stochastic arrivals can give rise to non-zero initial 

queue length  L(0) , even if the green time is adequate for mean arrivals during the cycle: this 

formula shows that any overflow queue of this kind will lead to substantial additional delay. 

The effect of overflow on the queue length during the subsequent cycle is shown for three 

different cases in Figure 1. 

Webster (1958) introduced a delay formula for fixed-time signals that avoids quantification of 

the overflow, and is therefore convenient to use. Webster showed by analysis that simple 

formulae could be used to achieve an approximate solution of (4) by calculating a fixed cycle 

time and then calculating the duration of stage times within this cycle that solves (3). Allsop 

(1971) formulated (4) as a convex non-linear programming problem using Webster’s 

simplified delay formula in the objective. This formulation has been extended by Improta and 

Cantarella (1984), and Heydecker and Dudgeon (1987) to incorporate the flexibility of phase-

based calculations, including some elements of sequencing. 

The feedback rule of ending green when the queue length falls to zero has attracted several 

approaches for traffic-responsive operation of signals: if successful, this approach has the 

effect of eliminating the second term of the delay expression (8). An important issue in 

implementing a method of this kind is identifying when indeed the queue has dissipated, and 

this is often done by the a proxy measure such as identifying when flow at the stopline falls 

from saturation  s  to arrival  q  rate. In Britain, this is achieved by seeking time gaps in the 

combined output of an array of vehicle detectors located at 12m, 25m and 40m upstream of 

the stop-line on the approach to a junction (the System D configuration, DETR, 1997). The 

corresponding Dutch system has the additional sophistication of phase-based control and 

logic to determine which phases are selected when some are terminated (Van Zuylen, 1976). 

The Australian SCAT system (Lowrie, 1982; 1991) uses detectors at the stopline to measure 

flow there and hence to identify the fall from saturation to arrival flow. The profile of flows at 

the stop-line corresponding to a queue length without overflow is shown in Figure 2: this 
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shows that the number of departures in each 6 second time interval falls from saturation to the 

number of arrivals when the queue dissipates – in this case at time  t = 84s , which can be 

taken as an indirect indication that the queue has dissipated. 

Formal optimisation approaches have been developed for this based upon feedforward of 

detector data to estimate details of future arrivals  ai(t) . Because of the proximity of detectors 

to the junction, the can provide estimates of arrivals for only a short time into the future – for 

example, a detector at 40m gives about 4s future information; for this reason the SCOOT 

(Hunt, Robertson, Bretherton and Winton, 1981) detection loops are placed as far upstream as 

possible. Beyond this detection period, only lower quality estimates of arrivals are generally 

available. 

Miller (1963b) calculated delay based upon imminent arrivals estimated from detector data 

supplemented by an exponentially weighted moving average estimate of mean flow for use 

after the detection period: he developed a discrete-time control rule based upon minimisation 

of delay, calculating at each decision point whether or not to extend the current stage 

according to whether there is a prospect of achieving lower delay by doing so. This showed 

that with stochastic arrivals, extending green after the end of saturation flow can be justified if 

a group of vehicles is approaching the stop-line as would occur if  ai(t)  is sufficiently great in 

the near future. This analysis has been developed into the fully practical MOVA system 

(Vincent and Peirce, 1988), which combines a stage-extension decision strategy with rules 

that prevent a stage from being terminated before queues have cleared. Robertson and 

Bretherton (1974) devised a backward dynamic programming formulation in which they used 

hypothetical knowledge of individual arrivals over a 600 second horizon. Although they 

recognised that this is an impractical data requirement, they showed that the optimal decisions 

in the short run were insensitive to variations in traffic arrivals at times after 25 seconds into 

the future. Gartner (1983) developed the OPAC rolling optimisation procedure that uses a 

direct search method over estimates of delay based upon detected arrivals for the short-term 

future and estimated arrivals thereafter. 

3.3 Cyclic variations in flow 

In co-ordinated signal systems, the cyclic variations in flow due to platooning of traffic can be 

exploited to achieve good control. Provided that adjacent junctions operate on closely related 

cycle times, the time at which green is indicated at the downstream end of a link can be 
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arranged relative to control at the upstream junction according to the cyclic profile of traffic 

arrivals that results. In order to achieve good coordination, additional control variables, 

known as offsets, can be used to manage the relative times at which green indications start at 

successive junctions along a route: this is known to have a substantial influence on control 

performance in road networks, but can generally only be achieved by striking a balance 

between the requirements of different routes where they conflict. 

The model relationship (7) can be used to estimate arrivals of traffic  qi(t)  throughout a time 

interval of duration  φi  into the future on the basis of flow measurements  ei(t)  made 

upstream. However, the duration of this interval is generally less than that of a complete 

signal cycle, which might be considered reasonable minimum planning period so that some 

supplementary estimates are usually required for arrivals after this interval. These are 

provided in the SCOOT system (Hunt, Robertson, Bretherton and Winton) by estimates based 

on flow profiles during earlier cycles, and in the network form of the OPAC system (Gartner, 

Kaltenbach and Miyamoto, 1983) by ones based upon the planned control and hence future 

outflow at upstream junctions. The ways in which these different sources of data can be 

combined to provide information for feedforward control are shown schematically in 

Figure 3.  

3.4  Systematic variation in flow 

The third cause of variation in flow identified above, namely systematic within-day variation 

(peak periods etc) can be accommodated within fixed-time traffic control systems by having 

available a library of appropriate plans each pre-calculated for typical flow patterns either at a 

certain time of day, or for special events such as market days or sports match days. The most 

appropriate plan can then be identified and implemented according to one of several possible 

criteria. This approach is known as plan selection. 

The matter then arises of how to select the most appropriate plan for use at each time. Various 

strategies are available for this, including according to: 

   1. time of day, day of week, or special event, 

   2. measured flows, 

   3. estimated performance. 

The first of these is straightforward and has the important merit that a plan can be 

implemented before the traffic conditions for which it is appropriate arise. This can be 
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especially important for peak period plans, which ideally would be in place before the start of 

the peak period (Bell, 1983; Bell, Gault and Taylor, 1983) so that there is no need to change 

signal plans at times of heavy flow. However, the success of this strategy depends on accurate 

advance knowledge of the flows that will arise, and hence on the repeatability of the flow 

patterns. 

The second and third of these strategies both depend on the availability of some on-line 

measures of flow. In the second strategy, good agreement is sought between measured flows 

and those for which a plan has been calculated. This can be implemented using relatively few 

observations of flow, generally in important parts of the network.  The third strategy is to 

implement the plan in the library that performs best with the observed flows; this has the 

advantage of selecting between signal plans directly according to their estimated performance. 

However, in order to implement this, observations of flow are required on many or most links 

of the network. 

An appealing idea for cases in which extensive on-line data are available is to generate a 

signal plan accordingly so as to be optimal for to the current flows. This approach is known as 

plan generation. Despite the attractiveness of this approach, it has been found not to work 

well in practice (Holroyd, 1972). As with the second strategy, this has extensive requirements 

for on-line data. Even so, the plans that are implemented according to them will lag behind 

the development of flows because switching will not occur until after new flows have been 

identified.  

All plan-switching strategies suffer from the problem that even if a new plan is optimal for the 

current flows, transient conditions that arise during the changeover between plans can cause 

substantial delays. This effect is particularly marked in coordinated systems where even a 

temporary mismatch in offsets can cause queues, the effects of which can persist. No entirely 

satisfactory method has been established for achieving a smooth transition between plans 

(Bretherton, 1979; Bell, 1983; Bell, Gault and Taylor, 1983). The SCOOT (Hunt, Robertson, 

Bretherton and Winton, 1981) on-line control system avoids abrupt plan changes by 

maintaining a plan that is varied gradually according to observations of traffic, and 

implements timings in each cycle that are allowed to deviate from this plan within certain 

limits according to detected arrivals.  
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A different approach to management of varying flows was developed by Ribeiro (1994), who 

sought the best single fixed-time plan to accommodate either a wide range or a known 

temporal profile of flows. He established robust signal plans by optimising their performance 

when implemented with a variety of flows. This approach has the particular advantages that 

no on-line data are required and no switching penalties are incurred. 

3.5  Long-term developments of flow 

Bell and Bretherton (1986) found that because of long-term changes in mean flows, the 

performance of a fixed-time plan would degrade at a rate of about 3 per cent each year. This 

phenomenon of ageing of fixed-time plans means that in order to achieve good performance, 

traffic surveys should be conducted and signal plans revised accordingly within every few 

years: the cost and effort of this survey work is substantial. One of the advantages of traffic 

responsive control systems is therefore that by tracking long-term developments in mean 

flows, they can overcome the need for extensive resurvey. Traffic-responsive control systems 

that calculate timings according to imminent arrivals and current state offer some prospect of 

achieving this: the SCOOT mechanism for on-line plan modification is an example of this. 

 

4.  ITS AND SIGNAL CONTROL 

4.1 Introduction 

The review of approaches to signal control of road traffic presented in section 3 shows that 

explicit optimisation formulations of signal control depend on information about the current 

and future state of traffic. The quantities that were identified there as appropriate state 

variables at time  t0  for signal control of road traffic were the current queue lengths  L(t0)  

and the mean arrival rates  q(t)  (t > t0) , with some further information being provided by 

details of arrivals  a(t) (t > t0) , which are generally available only for a short time into the 

future: we denote the collection of these state variables as  x(t) . However, the data, which we 

denote as  z(t) , that are provided by detector systems do not generally provide direct 

observations of the traffic state  x(t) : rather they provide observations of quantities that can be 

represented as functions  h(.)  of the traffic state and the control state  χχχχ(t) .  Alongside this 

formulation of observations through detector systems, the dynamics of the traffic under signal 
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control can be expressed in terms of the non-linear state equation (1) augmented by an 

appropriate description of the development of flows as discussed in section 3: this dependence 

is represented by the state function, here denoted as  g(.) . Together, these lead to the non-

linear state and observation system that depends on the control  χχχχ : 

( ) ( )[ ] ( )

( ) ( ) ( )[ ] ( ) �����+=

+=

tttt

ttt
dt

d ��xhz

��xg
x

,

,
        (9) 

In this formulation, estimation of the state  x(t)  from the observations  z(t)  corresponds to a 

non-linear filtering problem, to which the extended Kalman filter (Hwang and Brown, p357) 

can be applied.  

We now consider ways in which the information that is provided by various kinds of detector 

systems, and in particular those based on the techniques of intelligent transport systems (ITS), 

can be used to support signal control of road traffic. A key element in this is identification of 

the function  h(.)  that relates the observations  z  to the state  x  that is to be estimated. 

4.2 Point detectors 

Point traffic detectors, such as inductive loops, are widely used to provide traffic information 

for signal control. Depending on the location of the detectors and the time during the cycle, 

they can provide different kinds of information, which should therefore be interpreted and 

used accordingly. The main reason for this is that when queues form, they will extend 

upstream, occupying progressively more space and covering the field of any point detectors 

there. Once a detector field is covered in this way, traffic behaviour at that location will be 

dominated by the queue and departures from it until the time of passage of the last vehicle that 

was affected by presence of the queue. During this period, the detector will provide 

information about the current state of the queue, modified according to the departure pattern 

that is determined by signal control; this information can therefore be interpreted for use in 

feedback control. After the queue clears the position of the detector, it will provide 

information about individual arrivals of vehicles until it is next covered by a queue; this 

information can therefore be interpreted more directly in terms of imminent arrivals and used 

in feedforward control. 
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The spatio-temporal zones within which traffic activity is dominated by downstream 

conditions and upstream ones are depicted in Figure 4. Calculation of these zones will 

generally require use of a kinematic model of traffic to augment the point queue: a prime 

example of this is the Lighthill-Whitham (1955) model from which several others have been 

derived.  

Where detectors are placed at the stop-line, they will provide information about the current 

state of the queue that can be interpreted directly in the vertical queueing model. Thus if a 

vehicle is present, then the vertical queue is non-empty: presence detectors at the stop-line can 

be used for variable sequencing, for example to call for a special stage for priority vehicles or 

for offside turning traffic that would otherwise be opposed by oncoming traffic. Furthermore, 

when the flow at a detector at this location remains at the saturation rate  s  during green,  it 

indicates that a queue is still discharging, corresponding to a non-zero vertical queue; the 

Australian SCAT system (Lowrie, 1982; 1991) uses this kind of detection for feedback 

control.  

For a point detector that is located on the approach upstream of the stop-line, the transition 

from saturation flow  s  to arrival flow  q  indicates the imminent exhaustion of the vertical 

queue at a time that can be estimated from the travel time to the stopline. Detectors in 

upstream positions are often used to provide feedforward data on imminent vehicular arrivals, 

either for heuristic control rules such as System D or for optimisation approaches such as 

SCOOT, OPAC or MOVA, each of which provides for extension logic of some kind in 

respect of high rates of imminent arrivals. Because the duration of the estimated arrival period 

corresponds to the travel time to the stopline, the further upstream such a detector is located, 

the greater the extent of the information. 

4.3 Above-ground detection 

Detectors such as Doppler effect microwave and video-based systems that are located above 

ground have several advantages over inductive loops. Some of these arise from reduced 

installation and maintenance costs, whilst others arise from their operational characteristics. A 

typical above-ground detector will respond to traffic on a region of the approach to the 

junction, often (but not always) starting at the stop-line and extending upstream. Because 

traffic in a region of this kind will not usually all be either queueing or flowing freely, the data 
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correspond exactly to neither feedback nor feedforward concept, but rather to some 

combination of them.  

The characteristics of Doppler-effect microwave detectors are that they will respond to any 

vehicle that is approaching the junction within the detection region. The output is binary, 

indicating either presence of at least one such vehicle or absence of any. This kind of 

detection has the advantage over inductive loops that it can discriminate between approaching 

vehicles and any departing ones that are present in the detection zone. It is well suited to 

extension logic of the kind embodied in System D vehicle actuation. However, it has no 

spatial resolution within the detection region so that detailed interpretation of the output is 

difficult. 

Video image analysis detection systems offer the prospect of more detailed information 

capture. A suitably mounted video camera in favourable circumstances can acquire a view of 

several hundred metres of approach to a junction. The level of detail in the data extracted 

from a video image depends on the sophistication of the image processing that is undertaken, 

and can range from identification of presence of traffic to reporting of positions and speeds of 

individual approaching vehicles. A special feature of video image detection is that tall 

vehicles will tend to occlude shorter ones and hence prevent their detection; this becomes an 

increasing problem as distance from the camera increases, and can only be ameliorated by 

multiple camera installations and increasing mounting heights. Preliminary investigations (Ali 

et al, 1999) with a system that estimates the number of vehicles visible in the detection region 

on each approach showed that using a simple switching rule could achieve substantial 

performance advantages over System D vehicle actuated control. Further investigation 

showed that an appropriate choice of distance to the far end of the detection region was about 

100m, and that performance deteriorated if an exact count of vehicles was used rather than the 

count of visible ones that omits occluded vehicles suggesting an advantage of implicit 

discounting of future delays. These results establish the potential for using video data for 

signal control and suggest that more sophisticated use could offer further performance 

advantages. 

4.4  Vehicle tracking 

Several technologies are emerging that can be used to track the progress of individual vehicles 

through the road network. Whilst some of these are intended specifically for this purpose, in 
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other cases it is incidental to their primary purpose but can still contribute information that is 

relevant for use in signal control. Most systems of this kind provide information on a sample 

of vehicles within the traffic stream, and can be interpreted to provide trajectory information 

for those vehicles that are equipped. Ways in which data of this kind can be integrated into 

signal control systems have been discussed by Bell (1992). 

These technologies include geographical positioning systems (GPS) and route guidance 

systems that provide information to a mobile device on its location. This information can be 

exported, either directly or in summary form, from participating vehicles to traffic control 

systems. Similarly, mobile telephones that are switched on, in standby mode, can provide 

locational information that is updated frequently; this is of lower resolution than GPS data, 

but can be collected from base stations rather than requiring contribution from the subscribers. 

Finally, congestion charging and other road pricing systems collect data on vehicles that can 

be used to estimate current flows and queue lengths and, where data are matched through 

sections of the network, on travel times: an important feature of these systems is that they are 

intended to collect data on all vehicles rather than a sample of them. 

4.5  Automatic learning systems 

The approach of optimal control theory to signal control of road traffic is based upon idealised 

formalisations of traffic management objectives and the data that are available to address 

them. Whilst this can provide insights into the formulation of optimisation methods, 

experience shows that heuristic methods of traffic control can often outperform analytical 

ones. Reasons for this include that the data that are available often do not conform to the ideal 

requirements of optimal control theory – for example, they are observations of neither current 

nor future state, but rather relate to combinations of them.  

A contrasting approach to optimisation of traffic control systems is to apply an automated 

learning system to generate control rules that work well using the data that are available. 

Several approaches are available to this, including artificial neural networks (Hertz, Krogh 

and Palmer, 1991) and genetic algorithms (GA) (Holland, 1975) to generate rules within a 

rule-base that is then tested – usually by simulation. This approach can accommodate a wide 

range of different kinds of detector data and of candidate performance criteria for traffic 

management in a flexible manner so that urban traffic management and control can be 

implemented without the need to develop explicit optimisation processes. Automated learning 
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achieves this by using reinforcement learning with performance fed back from simulation of 

traffic: this has the advantage that it is not specific to any particular objective or form of 

primary data. The purpose of this is to develop an optimisation formulation that can achieve 

good traffic performance flexibly according to any of a range of possible criteria using data 

from a variety of kinds of traffic detectors (see, for example, Sayers, Anderson and Clement, 

1996). 

The automated learning process that is common to these approaches is depicted in Figure 5. 

The automated learning system (ALS) has the function of generating rules of operation for 

traffic control: this entails devising rules that use the detector information that is available to 

determine the signal operation. The learning process uses feedback in the form of a reward 

value that is calculated – most usually from simulation – according to the traffic operation that 

results when these rules are applied, and is used to discriminate between the different rules. 

Ultimately, the operation of the system is evaluated by reference to the traffic performance 

calculated according to traffic management objectives. In some circumstances, these systems 

can outperform traditional ones such as vehicle-actuated control. An interesting feature of this 

approach is that the good rules can be generated by using a reward quantity that differs from 

the performance objectives: for example, use of instantaneous queue length at the end of a 

stage, corresponding to overflow, can lead to lower mean rate of delays than using the mean 

rate of delay itself as the basis for calculation of the reward (Sha’Aban, Tomlinson, 

Heydecker, and Bull, 1992). We note with reference to the present context of optimal control 

theory that this choice of reward corresponds to an instantaneous observation of the traffic 

state whilst the objective of optimisation corresponds to the time-averaged value of it. Thus 

the formulation using feedback in which the instantaneous state is monitored seems to be 

more effective that one in which recent values of the objective itself are used as the basis of 

control. 

 

5.  CONCLUSIONS 

This paper has formulated signal control for road traffic within the framework of optimal 

control theory. By reference to this general formulation, the importance is discussed of 

appropriate treatments for different kinds of variability in traffic. A review of the literature 
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shows how various optimisation approaches can be identified within this formulation as 

corresponding to treatments of combinations of these kinds of variability.  

The kinds of traffic detector data that are currently available and for which there is a 

reasonable prospect do not generally correspond to direct observations of the state variables of 

the traffic system. There is an established record of heuristic traffic control systems that use 

the raw data in operational rules that succeed in controlling road traffic. However, detector 

data require careful interpretation if they are to be used in optimisation formulations. As a 

distinct alternative approach, the detector data that are available can be used in raw form 

together with rules that are generated automatically to achieve good control performance. The 

way in which each of these approaches is developed as further detector data become available 

will influence the style, if not the objectives, of signal control operations in the future. 

The optimal control framework that is presented here has the feature that it can be applied 

using data in varying quantity and quality, according to their availability. On general grounds, 

one could reasonably expect that the greater the quantity and quality of data, the better the 

performance that can be achieved. To a certain extent, any formal optimisation procedure can 

be identified within this framework. The interesting issue arises in practical application of 

whether with a certain availability of data, the performance that can be achieved by an explicit 

optimal control formulation exceeds that that can be achieved by either a heuristic approach 

or an automated learning one. This is a matter for investigation, with the expectation that as 

the quantity and quality of available data increases, so the balance of traffic control will 

develop from heuristics towards optimal control formulations. 
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Figure 1:  Queue length profiles illustrating various overflow possibilities 

 

 

 

 

 

 

 

 

 

 

Figure 2: arrival and departure profiles during a signal cycle 
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Figure 3:  Sources of data for feedforward control of traffic signals 
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Figure 4: Nature of data from an upstream detector. 
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Figure 5:  Structure of an automated learning system for traffic signal control 
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