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ABSTRACT

This paper identifies the prospective role of agearof intelligent transport systems
technologies for the signal control of road traffi¢e discuss signal control within the context
of traffic management and control in urban roadwoeks, and then present a control-
theoretic formulation for it that distinguishes therious roles of detector data, objectives of
optimisation, and control feedback. By referencethis, we discuss the importance of
different kinds of variability in traffic flows, ahreview the state of knowledge in respect of
control in the presence of different combinatiorishtem. In light of this formulation and
review, we identify a range of important possikbtfor contributions to traffic management
and control through traffic measurement and detedgchnology, and contemporary flexible

optimisation techniques that use various kindsutdmated learning.
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1. INTRODUCTION

Traffic signals are used to manage conflicting nemments for the use of road space — often
at road junctions — by allocating right of way tiffefent sets of mutually compatible traffic
movements during distinct time intervals. This modlellocating exclusive use of road space
to different contending sets of movements in tuonfers a special structure on the
operational requirement for traffic signals: thestthe discrete element of the order in which
mutually incompatible movements receive right ofywand the continuous one of the
duration for which this occurs. The objectives iginal control will vary in accordance with
the prevailing policy of urban traffic managememidacontrol. However, for a specific
objective, the control task is to calculate and lenent a series of control decisions that
promotes this objective, and ideally that optimige$he resources that are available for this
optimisation are data from detectors — either ctdleé in advance or on-line or in some
combination of these — and optimisation procedtoesake use of these data to calculate the

plan.

If traffic flows were constant over time and knownadvance, then calculation of signal
timing plans to optimise a specified objective wbblke a relatively straightforward matter.
However, traffic flows vary in several distinct v&athat make the control task substantially
more complicated. In particular, flows vary stodlwdly from moment to moment due to
fluctuations in demand and driver behaviour; flowsurban road networks vary cyclically
over time due to upstream signals; flows vary systecally within each day due to peak
periods; and flows change over protracted periddsnee due to developing demand for
travel. In practice, each of these separate reasgiirgpply to some degree. However, each of
them affects the control of road traffic in diffatevays, so we will consider their treatment

separately.

In this paper, we present a general formulatiorttiercalculation of signal timing plans as a
kind of optimal control problem (see, for exampkamien and Schwartz, 1991). This
provides a framework within which a wide literatuseunified. This then highlights the roles
of information that can be provided by detectork,nteasures of performance, and of
optimisers that calculate signal timings plans gdine data that are available. From this
review, we can identify the potential of techniquésntelligent transport systems (ITS) to
support urban traffic management and control thosggmal control of road traffic by

providing data and processes for their use.



2. SIGNAL CONTROL OF ROAD TRAFFIC

2.1 Introduction

We now consider in some detail the nature of sigoatrol of road traffic. In particular, we
identify the control decisions that are availablg discuss the objectives that can be
promoted by signal control, and we consider in iieétee data that are required for the

calculation of control decisions under various wmnstances.

2.2 A model of signal control

We consider the streams of traffic at a road jwmcthat are controlled by signals. Suppose
that each set of signals has displays that arerdieted by a signal controller at the junction
that switches them between red and green, throaglous combinations including amber
displays. The details of this operation will vaigcarding to prevailing rules that specify, for
example, minimum clearance times between mutualtpmpatible streams having green
indications, the exact sequence and durations mbgwtions that include amber, minimum
durations of green indications, and in some casesnigsible orderings of mutually
incompatible streams. The rules that specify thesiils vary between countries, and are

generally intended to ensure safe operation thainsistent with local custom and practice.

In general terms, the control decisions to be taken

in what order should signals be switched to gneeg indications;

for how long should each green indication persist.
Two distinct styles of formulation have been depeld for these decisions. The more
straightforward one is to establish maximal setsighals that control mutually compatible
streams of traffic; these sets are knowstages. Each stream is included in at least one stage,
and can appear in several of them. In the resu#tiage-based formulation (see, for example,
Allsop, 1971), the control decisions are takendiages. This has the advantage of dividing
time into a series intervals throughout each ofciwvha single stage runs; these intervals are

separated by interstage periods within which sgyjnhlinge between green and red.

The second style of formulation is in terms of mmal sets of mutually compatible streams

that are necessarily switched simultaneously; tlsese are known gshases. Each stream



belongs to exactly one phase, but where differdr@sps consist of streams that are all
mutually compatible, they can receive right of veaycurrently. In the resulting phase-based
formulation (see, for example, Improta and Canlardlo84; Gallivan and Heydecker, 1988)
the control decisions are taken for phases indallguo specify their starting times and
durations. This formulation is more flexible thantlhe stage-based one because the sequence
of signal indications and the structure of the nsiige periods are implicit endogenous
variables. It can therefore yield substantiallytéretcontrol performance (Heydecker and
Dudgeon, 1987), but this is achieved at the expefhsequiring a greater number of variables

and constraints.

In the remainder of this paper, we consider thectfdf a sequence of control decision on an
individual stream. The present analysis can beldped within either a stage-based or a

phase-based formulation as required.
2.3 A model of traffic under signal control

Various models have been developed of the way iiclwioad traffic responds to signal
control. In this section, we present a widely useabel of this kind in a form that can be
identified with control theory (see, for examplearien and Schwartz, 1992). Whilst this is
not the only possible model, and indeed others liwaen investigated that provide further
detail, this model provides sufficient detail andormation for most analyses of signal-

controlled road junctions.

Let the mean arrival rate of traffic in streamat time t be qi(t) , and letai(t) = gi(t) + &(t)

be the actual number or arrivals at tinhe where g(t) is a stochastic error for the arrival
process with zero mean. In the case of continueteshinistic arrivalsgi(t) = 0 . In the case
of road junctions in dense urban networks, the naeamal rate gi(t) will often vary quasi-
cyclically with time t due to platooning of traffic arriving from upsdra signal-controlled
junctions. We consider this and other kinds ofafaitity in traffic flows, their representation
in the state equation, and approaches to expladimogvledge of their nature in signal control

in due course.

At times when the signals that control a steamlaysped, then no traffic departs and any
arrivals join a queue. Let the number of vehicrestreami that would have departed at time

t but that have been prevented from doing so byeauor earlier red signal indications be



Li(t) : this corresponds to the amount of traffic inaionalvertical queue of vehicles at the

stop-line. The variable&;(t) and gi(t) correspond tstate variables for the stream.

Let xi(t) be a characteristic for effective green indmasi in streami , so that

1 if stream haseffectivegreenattime t,
Xi\t)= _
0 otherwise.

This quantity is used here to represent the cowteaisions. It is subject to constraints that
embody the safety and operational limitations aeti in section 2.2, including ones that
enforce safe resolution of the contention betweilerdnt streams for green time. In this
exposition we will treat this as a binary (and reddscontinuousgontrol variable, and will

consider only combinations of such variables thét#y all relevant constraints.

Suppose that when the signals are greemy(if) > O , then traffic will depart at a certain rate
s know as thesaturation departure rate, and that if Li(t) =0, then traffic departs as it
arrives. This model relies upon a certain correctimom displayed green indications to
effective ones that is achieved by introducingtstad end lags that typically have values of 2
and 3 seconds respectively; with this correcticstusate estimates can be made of both

capacity and delay by use of the effective gremie @nd the saturation departure rate.

This model of queue dynamics can be summarisdteistdte equation for queue lengtlh;(t):

%)+ (e x 6l O-H-3Ox ol 6] @

where ©(.) is the Heaviside step function (Lighthill, 35 specified by®(x) =0 if x<0,
andO(x) =1 if x> 0. We note that this component of the stateagom is non-linear for
several reasons:
the Heaviside step function is discontinuous,
the equation includes the produgit) ©[Li(t)] of a control variable and a function of
a state variable, and

the equation also includes the further produgtt) xi(t) O[Li(t)] .

This vertical queueing model will generally undéireate the number of vehicles queueing in
a stream of traffic because it makes no accoutfietpace that the queue occupies, though it

will certainly be 0 when there are no vehicles cqgieg. The main limitation of a model based



upon a vertical queue is that because it does o lany spatial content it cannot inform
directly on blocking back between adjacent junctiothe importance of this for control or
road networks has been emphasised by Lo (1999)@n@hang and Chan (2000).

2.4 Objectives of signal control

Signal control can be used to promote the objestofeurban traffic management and control
in many different ways (Wood, 1993), including batictical considerations and more
strategic ones. The general purpose of tacticfidrenanagement includes ensuring good
operation of the junction and network with curremid expected arrivals of traffic. The
purpose of strategic traffic management is broaded includes possibilities such as
prioritisation and promotion of different groups travellers such as pedestrians or bus
passengers by provision of appropriate faciliteex] limitation of capacity for motor vehicles

to manage traffic growth.

In this section, we show how a range of traffic aggment objectives can be expressed
within the framework of optimal control theory ugirthe control and state variables
introduced above. According to Kamien and Schwadltie, standard form of objective of

optimal control is

A L, ) = [ f[x(t) L(t) at)] e ot 2)

t

for some scalar functiori(.) of the control and state variables, and distoate o . In case
the evaluation horizon ends at titrve T, then an additional terminal coB{x(T), L(T), q(T)]
can be associated with the final control conditaomd state in view of the omission of

evaluation at any later time.

At heavily loaded junctions, it is often desiralbtematch the capacity of each of the most
heavily loaded streams to the mean arrival rateso as to maximise the reserve capacity or,
if the junction is overloaded, to minimise the degof this (Allsop, 1976). This objective can

be expressed in terms of the state and contradbi@s introduced above in the formulation

Minimise Max G 3)
X I =

i(t) S



where E;(.) represents mathematical expectation operator overttime

In cases where junctions are in close proximity, manageafehe spatial length of queues
occurring at them can be important so that capacity isosbthrough queues forming at one
junction extending upstream to block exits and stogsliat adjacent ones (Quinn, 1992).
Other queue-related objectives include minimising th@ber of vehicles that remain in the
queue at the end of an effective green period, which is knasvitheoverflow queue.

Formulations of signal control relating to objectivegho$ kind can be expressed directly in

terms of the control variableg(t) and the state variablds(t) .

The number of vehicles in the vertical queue associat#a avistream of traffic can be
interpreted as the mean rate of delay in that stream anales an objective that bears direct
economic interpretation (Allsop, 1971). Where juncti@ne operating within capacity and
traffic growth is not considered to be an issue, miratios of the total mean rate of delay at

a junction is often adopted as an objective for traffidcrodnThis can be expressed as
Minimise > E[L (t)] (4)
x i

where the relationship between the state variadldg and the control variables( is
governed by the state equation (1). In cases wioersome or other reason the future queue
lengths are uncertain, a discount can be appligttiimthe objective of optimisation according

to (2) to reflect this. This can be expressed as

Minimise )" ['L,(t) e “'dt, (5)

which corresponds to optimisation of objective @jh f[x(t), L(t), q(t)] = Xi Li(t) . This
formulation emphasises the importance of decisiorize implemented in the near future that
affect the state promptly relative to those tha ianplemented later and that affect states

afterwards on the basis that there will be a pdigito reconsider them in the future.

Other objectives can also be represented using tte#rol and state variables. For example,
Robertson, Lucas and Baker (1980) showed thatofateel usageF in a stream of traffic
can be estimated from the total rate of trav@l, the rate of delayL and rate at which

vehicles stop S according to F=0qQ+a.L+asS where the parametersx are



determined experimentally. The total rate of trawela network with fixed demand is
insensitive to variations in signal control. Thetantaneous rate at which vehicles in a stream
stop to join the vertical queue can be found utegstate and control variables of the present

traffic model as
s (t)=[a (t)+e ()] L+ x, E}{oL ()] -3]. (6)

Accordingly, the present analysis can encompasdnmsation of fuel usage within its

framework.
2.5 Variability in traffic flows

We now consider ways in which traffic flows anditheariability can be represented within
the present framework. The simplest case is onavhich the flows are constant and

deterministic: gi(t) = g, Ut, so that &(t) = 0 and the corresponding component of the state
equation is dg;/dt =0. Beyond this case, variability in traffic flowsu arise in several

different ways. Here we consider four differentdsrof variability in traffic flows and show

how these can each be represented in the statéegua

The first case of variability that we considerhaitin which traffic flow varies stochastically
around a constant mean rate. In this case, theahrate a(t) in streami at time t can be

expressed asi(t) = g +e&i(t) . In the case of continuous traffig;(t) is continuous in time
and represents deviation in the arrival rate fréwn ¢onstant mean valug. In the case of
discrete traffic in which vehicular arrivals formpaint process at instants, (nON) , the

error can be expressed aa(t):ZG(t—tL)—q , where &(.) is the Dirac delta function

(Lighthill, 1958). If arrivals are regular, theretinter-arrival headways will be determined by

the flow as t, -t|, =1/ G (n DN); if the arrivals are stochastic, then the headwals/ary

around this value. This can be used to represemt-gdrm variability in arrivals due to
random fluctuations around a constant mean arrat@l. In the case of constant mean flow
with random variations, the corresponding componehtthe state equation is again

dg;/dt =0. However, in this case the mean flogy is a hidden variable that cannot be
observed directly: only the suei(t) = G, + &i(t) can be observed from this the mean can be

estimated by repeated measuremerat (o) .



We now consider a second kind of variation, whishthe platooning of flows in road
networks due to upstream traffic signals. Thisaftgves rise to quasi-cyclic profiles of flow,
typically with high arrival rates for vehicles thpaissed through upstream junctions early
during the green period there. In cases where tbigof flow g(t) that enters linki is
known, either by measurement or by modelling, tbe/f g(t) arriving at the downstream
end of the link can be estimated using the unddlayavel time @ for the link as

q(t)=e(t-¢). Robertson (1969) showed how this estimation cdud improved by

smoothing the flows according to a platoon disppersnodel, which in discrete time with step

At can be written as
qt)=Fel-@)+@-F)a(t-2a) (7)

where F is a smoothing parameter that Robertson founedavith the free-flow travel time

@ according td- = 1/(1 +pq@) for some parametep .

The third kind of variation is that arising fromssgmatic changes in demand for travel over a
timescale of many minutes, as occurs within a nrmgrmueak period. This kind of variation
can affect either discrete or continuous traffiovals, whether or not they are subject to
random variations. We therefore consider it sepratts effect and treatment can be
combined with those for other variations that arespnt. In this case, the mean flogyt)
follows a regular profileP;(t) over time — for example, repeating each weekbathis case,

the flow component of the state equationds, /dt = R'(t): because of the periodic nature of

the regular profile, Pi(t) = Pi(t+p) for some periodp . Whether or not the mean flow is
hidden by the presence of stochastic variationaddition to the periodic ones, it can be
estimated by repeated measurement, in this carg ogasurements at time to estimate
Pi [t (modp)] . A further possibility arises in this case tiia¢ profile differs in detail between
repetitions in the sense that similar mean flowsuodut at times that do not correspond
exactly: this can be represented agt) = P[t+Ti(t)] , where T;(t) represents the stochastic

deviation in the timing of the profile.

The fourth kind of variation that we consider asidgecause of long-term development in
mean flows due to urban development and changeswel patterns. In this case, the flow

component of the state equatiordis /dt =n), (t) for somen;(t) that represents the variation

over time of the mean flow — this is nominally amoe term in the state equation. The



distinction between this case and the previousisrbat here the variation in flow is not

periodic, so cannot be estimated in the same wagbgated measurement: if both changes in
mean flow and stochastic variations around the naeampresent, then estimation of the mean
flow is a problem of statistical filtering to estie the separate effects of stochastic variation
&i(t) about the mean and variatiap(t) of the mean (see, for example, Brown and Hwang,
1992 for a general treatment of this topic, anddéeker and Bressaud, 1992 for one specific

to the analysis of data from traffic detectors).

These four kinds of variability have been introdliceeparately. However, all sixteen
(16 = Z) possible combinations of them can arise and canahbalysed by appropriate

combination of the specific analyses presented. here
2.6 Data requirementsfor optimisation

According to the analysis presented in this seckonwledge of the state variablés and q

is sufficient for optimisation of signal control thin an optimal control framework. Control
actions taken at any timg will influence future stated (t) ,t >t, as expressed in the state
equation (1) for L . Furthermore, because of the rules of operatiosignal controllers,
control actions made at any time will affect thaga of possible actions at future times. The
evaluation of a control decision is made on thasbak estimated performance during the
future, which will be affected by each of these siderations as well as by details of the
arrivals. For this reason, some further informatsuch as the realisation of a stochastic

arrivals process(t) (t > tp) can be used to advantage in the control.

The data requirements for optimal control are theiline estimates of the queue lengths
and of the mean flows) . Provided that the statke(tp) is known at some timdy, the state
equation (1) can in principle be used to calculatiees at all future times from the control
X(t) and the mean flowsy(t) . Furthermore, the queue length will generadiurn to zero
from time to time, which if identified correctly @vides an opportunity to reset the estimates
of that component of the state. However, in practiceasurement errors and stochastic
variations in arrivals around the mean flogy will lead to accumulation of errors so that

additional information will be conferred by measusnts that relate to the queue lengths
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3. ESTABLISHED RESULTSON OPTIMISATION
3.1 Introduction

A substantial literature exists on optimisationcohtrol decisions for traffic signals. In this
section, we review these approaches within the dveonk that was presented in section 2.
The intention of this is to show how each of thapproaches addresses one of the four
different kinds of variability that were introduced section 2.5, and what their data
requirements are. We consider these approachesnmtcording to the kind of variability
that it admits.

3.2 Control of constant mean flows

A large proportion of the literature on optimal toh of road traffic presupposes that the
mean flow of traffic in each steam is constant &ndwn. Here, we review results from the
literature, considering in turn results that apilydeterministic arrivals at the mean rate, and

then stochastic arrivals with each of fixed anghoesive control.

Consider first the case of constant uniform argvat a junction where the initial queue
lengths L(0) are known and possibly large. Grafton and Nie{@865) explored use of the
rule of running each stage until queues had dig=ipand then switching to the next stage: the
argument in support of this is that until the qudissipates, flow at the stopline will be at the
saturation rates whereas after that, it will fall to the arrivalte g and so will use green time
less efficiently. They showed that under a widegeanf circumstances, this rule provides
control that minimises the mean rate of future alistted delay, corresponding to formulation
(5). The exceptions that they noted were for casiedarge queues on high capacity
approaches occurring and small queues on low dgpanes. This rule conforms to the
concept offeedback control because it specifies the optimal control rule emts of the
current value of the state variable@) andq(t) (Kamien and Schwartz, p262).

In the case that the arrivals are stochastic wottstant mean rate, then two distinct styles of
operation are available: the first is to calculated implement fixed timings that will
accommodate stochastic variation in arrivals, wiile second is to calculate timings on-line

in a way that responds to detected arrivals artdsst&/e consider these in turn.
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Following Miller (1963a) and others, the mean ratelelay in a signal cycle starting at time
t =0 with initial queue length (0) that consists of a red period of duratiorfollowed by a

green period of duratiog , is given to good approximation by

0= [aE(r é(t 2 Eg[)L(O) J§ ®)

When the red and green times are fixed, stochasti¢als can give rise to non-zero initial
queue lengthL(0) , even if the green time is adequate for megawads during the cycle: this
formula shows that angverflow queue of this kind will lead to substantial additionalla
The effect of overflow on the queue length durihg subsequent cycle is shown for three

different cases in Figure 1.

Webster (1958) introduced a delay formula for fitede signals that avoids quantification of
the overflow, and is therefore convenient to useb¥er showed by analysis that simple
formulae could be used to achieve an approximdtgiso of (4) by calculating a fixed cycle
time and then calculating the duration of stageesirwithin this cycle that solves (3). Allsop
(1971) formulated (4) as a convex non-linear progneng problem using Webster’'s
simplified delay formula in the objective. This moulation has been extended by Improta and
Cantarella (1984), and Heydecker and Dudgeon (1@8incorporate the flexibility of phase-

based calculations, including some elements ofesezjng.

The feedback rule of ending green when the queugghefalls to zero has attracted several
approaches for traffic-responsive operation of &liginif successful, this approach has the
effect of eliminating the second term of the detagpression (8). An important issue in
implementing a method of this kind is identifyindn@n indeed the queue has dissipated, and
this is often done by the a proxy measure suckestifying when flow at the stopline falls
from saturations to arrival g rate. In Britain, this is achieved by seekingeigaps in the
combined output of an array of vehicle detectocatled at 12m, 25m and 40m upstream of
the stop-line on the approach to a junction @gem D configuration, DETR, 1997). The
corresponding Dutch system has the additional stipation of phase-based control and
logic to determine which phases are selected wbaresare terminated (Van Zuylen, 1976).
The Australian SCAT system (Lowrie, 1982; 1991)sudetectors at the stopline to measure
flow there and hence to identify the fall from gsation to arrival flow. The profile of flows at
the stop-line corresponding to a queue length witteverflow is shown in Figure 2: this

12



shows that the number of departures in each 6 detrore interval falls from saturation to the
number of arrivals when the queue dissipates -higidase at timet = 84s, which can be

taken as an indirect indication that the queuedisspated.

Formal optimisation approaches have been develégethis based upofeedforward of
detector data to estimate details of future arsia(t) . Because of the proximity of detectors
to the junction, the can provide estimates of atsifor only a short time into the future — for
example, a detector at 40m gives about 4s futdmgnration; for this reason the SCOOT
(Hunt, Robertson, Bretherton and Winton, 1981) d&ire loops are placed as far upstream as
possible. Beyond this detection period, only lowaality estimates of arrivals are generally

available.

Miller (1963b) calculated delay based upon imminamtvals estimated from detector data
supplemented by an exponentially weighted movingrage estimate of mean flow for use
after the detection period: he developed a disd¢nete control rule based upon minimisation
of delay, calculating at each decision point whetbe not to extend the current stage
according to whether there is a prospect of achgelower delay by doing so. This showed
that with stochastic arrivals, extending greenréafie end of saturation flow can be justified if
a group of vehicles is approaching the stop-linevasld occur if a(t) is sufficiently great in
the near future. This analysis has been developtdthe fully practical MOVA system
(Vincent and Peirce, 1988), which combines a stadgension decision strategy with rules
that prevent a stage from being terminated befareugs have cleared. Robertson and
Bretherton (1974) devised a backward dynamic pragrmg formulation in which they used
hypothetical knowledge of individual arrivals ovar600 second horizon. Although they
recognised that this is an impractical data requanmat, they showed that the optimal decisions
in the short run were insensitive to variationgratffic arrivals at times after 25 seconds into
the future. Gartner (1983) developed the OPAC nolioptimisation procedure that uses a
direct search method over estimates of delay baped detected arrivals for the short-term

future and estimated arrivals thereafter.
3.3Cycdlic variationsin flow

In co-ordinated signal systems, the cyclic varraio flow due to platooning of traffic can be
exploited to achieve good control. Provided thgaeeht junctions operate on closely related

cycle times, the time at which green is indicatédha downstream end of a link can be

13



arranged relative to control at the upstream jamcticcording to the cyclic profile of traffic
arrivals that results. In order to achieve goodrdmation, additional control variables,
known asoffsets, can be used to manage the relative times at wjreén indications start at
successive junctions along a route: this is knosvhave a substantial influence on control
performance in road networks, but can generally drd achieved by striking a balance

between the requirements of different routes whigsg conflict.

The model relationship (7) can be used to estirmateals of traffic gi(t) throughout a time
interval of duration @ into the future on the basis of flow measuremem) made
upstream. However, the duration of this intervabénerally less than that of a complete
signal cycle, which might be considered reasonabtemum planning period so that some
supplementary estimates are usually required fowvads after this interval. These are
provided in the SCOOT system (Hunt, Robertson,&mrdn and Winton) by estimates based
on flow profiles during earlier cycles, and in thetwork form of the OPAC system (Gartner,
Kaltenbach and Miyamoto, 1983) by ones based uperplanned control and hence future
outflow at upstream junctions. The ways in whiclesth different sources of data can be
combined to provide information for feedforward toh are shown schematically in
Figure 3.

3.4 Systematic variation in flow

The third cause of variation in flow identified aleg namely systematic within-day variation
(peak periods etc) can be accommodated within fiikad traffic control systems by having
available a library of appropriate plans each etdated for typical flow patterns either at a
certain time of day, or for special events sucimasket days or sports match days. The most
appropriate plan can then be identified and implgetaaccording to one of several possible

criteria. This approach is known plsin sdlection.

The matter then arises of how to select the mgstogpiate plan for use at each time. Various
strategies are available for this, including accaydo:

1. time of day, day of week, or special event,

2.  measured flows,

3. estimated performance.
The first of these is straightforward and has thepdrtant merit that a plan can be
implemented before the traffic conditions for whithis appropriate arise. This can be

14



especially important for peak period plans, whitéally would be in place before the start of
the peak period (Bell, 1983; Bell, Gault and Tayl#83) so that there is no need to change
signal plans at times of heavy flow. However, thecgss of this strategy depends on accurate
advance knowledge of the flows that will arise, d@ohce on the repeatability of the flow

patterns.

The second and third of these strategies both depenthe availability of some on-line
measures of flow. In the second strategy, goodeageet is sought between measured flows
and those for which a plan has been calculatec ddm be implemented using relatively few
observations of flow, generally in important pasfsthe network. The third strategy is to
implement the plan in the library that performstb&gh the observed flows; this has the
advantage of selecting between signal plans dyracttording to their estimated performance.
However, in order to implement this, observatiohaw are required on many or most links
of the network.

An appealing idea for cases in which extensiveim@&-tlata are available is to generate a
signal plan accordingly so as to be optimal foth® current flows. This approach is known as
plan generation. Despite the attractiveness of this approachadt been found not to work
well in practice (Holroyd, 1972). As with the sedastrategy, this has extensive requirements
for on-line data. Even so, the plans that are implaed according to them will lag behind
the development of flows because switching will aotur until after new flows have been
identified.

All plan-switching strategies suffer from the prefol that even if a new plan is optimal for the
current flows, transient conditions that arise dgrihe changeover between plans can cause
substantial delays. This effect is particularly kear in coordinated systems where even a
temporary mismatch in offsets can cause queuegffibets of which can persist. No entirely
satisfactory method has been established for acigex smooth transition between plans
(Bretherton, 1979; Bell, 1983; Bell, Gault and Tayl1983). The SCOOT (Hunt, Robertson,
Bretherton and Winton, 1981) on-line control systawoids abrupt plan changes by
maintaining a plan that is varied gradually acawgdito observations of traffic, and
implements timings in each cycle that are allowedi¢viate from this plan within certain
limits according to detected arrivals.
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A different approach to management of varying flovess developed by Ribeiro (1994), who
sought the best single fixed-time plan to accomrtedsather a wide range or a known
temporal profile of flows. He established robugnai plans by optimising their performance
when implemented with a variety of flows. This apgeh has the particular advantages that

no on-line data are required and no switching pesadre incurred.

3.5 Long-term developments of flow

Bell and Bretherton (1986) found that because ofjiterm changes in mean flows, the
performance of a fixed-time plan would degrade &dta of about 3 per cent each year. This
phenomenon adigeing of fixed-time plans means that in order to achigged performance,
traffic surveys should be conducted and signal plavised accordingly within every few
years: the cost and effort of this survey workubstantial. One of the advantages of traffic
responsive control systems is therefore that bgking long-term developments in mean
flows, they can overcome the need for extensivervey. Traffic-responsive control systems
that calculate timings according to imminent arlsvand current state offer some prospect of

achieving this: the SCOOT mechanism for on-lineptaodification is an example of this.

4. ITSAND SIGNAL CONTROL

4.1 Introduction

The review of approaches to signal control of raadfic presented in section 3 shows that
explicit optimisation formulations of signal conftrdepend on information about the current
and future state of traffic. The quantities thatrevedentified there as appropriate state
variables at timet, for signal control of road traffic were the curreueue lengthsl (o)
and the mean arrival rateg(t) (t >tp) , with some further information being provided by
details of arrivalsa(t) (t>tg), which are generally available only for a sharie into the
future: we denote the collection of these stateabdes asx(t). However, the data, which we
denote as z(t) , that are provided by detector systems do noteigdly provide direct
observations of the traffic statgt) : rather they provide observations of quantitieg dan be
represented as functions(.) of the traffic state and the control stagé) . Alongside this

formulation of observations through detector systetime dynamics of the traffic under signal
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control can be expressed in terms of the non-litate equation (1) augmented by an
appropriate description of the development of flassliscussed in section 3: this dependence
is represented by the state function, here denaded(.) . Together, these lead to the non-

linear state and observation system that depentiseacontroly :

% = glx(t). 2(t)] + nt) ©)

2(t) = h{x(t). %(t)] + (t)

In this formulation, estimation of the stai€t) from the observationg(t) corresponds to a
non-linear filtering problem, to which the extendedlman filter (Hwang and Brown, p357)

can be applied.

We now consider ways in which the information tisgprovided by various kinds of detector
systems, and in particular those based on the itpods of intelligent transport systems (ITS),
can be used to support signal control of roaditraff key element in this is identification of

the functionh(.) that relates the observatiomsto the statex that is to be estimated.
4.2 Point detectors

Point traffic detectors, such as inductive loops,w&idely used to provide traffic information
for signal control. Depending on the location of thetectors and the time during the cycle,
they can provide different kinds of information, iath should therefore be interpreted and
used accordingly. The main reason for this is thhen queues form, they will extend
upstream, occupying progressively more space awericg the field of any point detectors
there. Once a detector field is covered in this,weaffic behaviour at that location will be
dominated by the queue and departures from it th@itime of passage of the last vehicle that
was affected by presence of the queue. During plesod, the detector will provide
information about the current state of the queusdifitd according to the departure pattern
that is determined by signal control; this inforimoatcan therefore be interpreted for use in
feedback control. After the queue clears the pwsitof the detector, it will provide
information about individual arrivals of vehiclesitil it is next covered by a queue; this
information can therefore be interpreted more diyeo terms of imminent arrivals and used

in feedforward control.
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The spatio-temporal zones within which traffic atyi is dominated by downstream

conditions and upstream ones are depicted in Figur€alculation of these zones will

generally require use of a kinematic model of icafb augment the point queue: a prime
example of this is the Lighthill-Whitham (1955) nedrom which several others have been
derived.

Where detectors are placed at the stop-line, th#ypmvide information about the current
state of the queue that can be interpreted diréctthe vertical queueing model. Thus if a
vehicle is present, then the vertical queue isexmpty: presence detectors at the stop-line can
be used for variable sequencing, for example tdf@ah special stage for priority vehicles or
for offside turning traffic that would otherwise bpposed by oncoming traffic. Furthermore,
when the flow at a detector at this location remaihthe saturation rate during green, it
indicates that a queue is still discharging, cqoesling to a non-zero vertical queue; the
Australian SCAT system (Lowrie, 1982; 1991) usess tind of detection for feedback
control.

For a point detector that is located on the appragustream of the stop-line, the transition
from saturation flows to arrival flow g indicates the imminent exhaustion of the vertical
queue at a time that can be estimated from theelttame to the stopline. Detectors in
upstream positions are often used to provide feeadi@ data on imminent vehicular arrivals,
either for heuristic control rules such as SystenorCor optimisation approaches such as
SCOOT, OPAC or MOVA, each of which provides for engion logic of some kind in
respect of high rates of imminent arrivals. Becahseduration of the estimated arrival period
corresponds to the travel time to the stopline,ftinther upstream such a detector is located,

the greater the extent of the information.

4.3 Above-ground detection

Detectors such as Doppler effect microwave andorloesed systems that are located above
ground have several advantages over inductive loSpse of these arise from reduced
installation and maintenance costs, whilst othesedrom their operational characteristics. A
typical above-ground detector will respond to tcafbn a region of the approach to the
junction, often (but not always) starting at thepstine and extending upstream. Because

traffic in a region of this kind will not usuallylde either queueing or flowing freely, the data
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correspond exactly to neither feedback nor feedhodwconcept, but rather to some
combination of them.

The characteristics of Doppler-effect microwaveedddrs are that they will respond to any
vehicle that is approaching the junction within thetection region. The output is binary,

indicating either presence of at least one suchiclelor absence of any. This kind of

detection has the advantage over inductive loagisittican discriminate between approaching
vehicles and any departing ones that are presetiteirdetection zone. It is well suited to

extension logic of the kind embodied in System Dicke actuation. However, it has no

spatial resolution within the detection region battdetailed interpretation of the output is
difficult.

Video image analysis detection systems offer thespect of more detailed information
capture. A suitably mounted video camera in favblgraircumstances can acquire a view of
several hundred metres of approach to a junctitne. [€vel of detail in the data extracted
from a video image depends on the sophisticaticche@image processing that is undertaken,
and can range from identification of presence aifitr to reporting of positions and speeds of
individual approaching vehicles. A special featwfevideo image detection is that tall
vehicles will tend to occlude shorter ones and aeprevent their detection; this becomes an
increasing problem as distance from the cameraases, and can only be ameliorated by
multiple camera installations and increasing maowntieights. Preliminary investigations (Ali
et al, 1999) with a system that estimates the nuwibeehicles visible in the detection region
on each approach showed that using a simple swigchile could achieve substantial
performance advantages over System D vehicle aduabntrol. Further investigation
showed that an appropriate choice of distancedadahend of the detection region was about
100m, and that performance deteriorated if an ec@ant of vehicles was used rather than the
count of visible ones that omits occluded vehictesgesting an advantage of implicit
discounting of future delays. These results esthiihe potential for using video data for
signal control and suggest that more sophisticateel could offer further performance
advantages.

4.4 Vehicletracking

Several technologies are emerging that can betageack the progress of individual vehicles

through the road network. Whilst some of theseirtended specifically for this purpose, in
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other cases it is incidental to their primary pwg@dut can still contribute information that is
relevant for use in signal control. Most systemshig kind provide information on a sample
of vehicles within the traffic stream, and can beiipreted to provide trajectory information
for those vehicles that are equipped. Ways in whliata of this kind can be integrated into

signal control systems have been discussed by(B¥R).

These technologies include geographical positiorsggtems (GPS) and route guidance
systems that provide information to a mobile dewaoeits location. This information can be
exported, either directly or in summary form, frgrarticipating vehicles to traffic control
systems. Similarly, mobile telephones that are dwitl on, in standby mode, can provide
locational information that is updated frequentlyis is of lower resolution than GPS data,
but can be collected from base stations rather tbauiring contribution from the subscribers.
Finally, congestion charging and other road prigggtems collect data on vehicles that can
be used to estimate current flows and queue lersgtds where data are matched through
sections of the network, on travel times: an imgarfeature of these systems is that they are

intended to collect data on all vehicles rathenthaample of them.

4.5 Automatic learning systems

The approach of optimal control theory to signaiteal of road traffic is based upon idealised
formalisations of traffic management objectives dine data that are available to address
them. Whilst this can provide insights into the nfiaation of optimisation methods,
experience shows that heuristic methods of traftiatrol can often outperform analytical
ones. Reasons for this include that the data tiesé\ailable often do not conform to the ideal
requirements of optimal control theory — for exaephey are observations of neither current

nor future state, but rather relate to combinatmfthiem.

A contrasting approach to optimisation of traffisntrol systems is to apply an automated
learning system to generate control rules that week using the data that are available.
Several approaches are available to this, includmtificial neural networks (Hertz, Krogh
and Palmer, 1991) and genetic algorithms (GA) @l 1975) to generate rules within a
rule-base that is then tested — usually by simaafl his approach can accommodate a wide
range of different kinds of detector data and afididate performance criteria for traffic
management in a flexible manner so that urbanidraffanagement and control can be

implemented without the need to develop explictirojsation processes. Automated learning
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achieves this by using reinforcement learning piginformance fed back from simulation of
traffic: this has the advantage that it is not feto any particular objective or form of
primary data. The purpose of this is to develompiimisation formulation that can achieve
good traffic performance flexibly according to amfya range of possible criteria using data
from a variety of kinds of traffic detectors (sé&, example, Sayers, Anderson and Clement,
1996).

The automated learning process that is commonegetpproaches is depicted in Figure 5.
The automated learning system (ALS) has the funatibgenerating rules of operation for
traffic control: this entails devising rules thageuthe detector information that is available to
determine the signal operation. The learning pceses feedback in the form of a reward
value that is calculated — most usually from simafa— according to the traffic operation that
results when these rules are applied, and is wséddtriminate between the different rules.
Ultimately, the operation of the system is evalddby reference to the traffic performance
calculated according to traffic management objestitn some circumstances, these systems
can outperform traditional ones such as vehicleaet! control. An interesting feature of this
approach is that the good rules can be generatedibhy a reward quantity that differs from
the performance objectives: for example, use dhmaneous queue length at the end of a
stage, corresponding to overflow, can lead to lomean rate of delays than using the mean
rate of delay itself as the basis for calculationtlee reward (Sha’Aban, Tomlinson,
Heydecker, and Bull, 1992). We note with referetacthe present context of optimal control
theory that this choice of reward corresponds tanatantaneous observation of the traffic
state whilst the objective of optimisation corrasp® to the time-averaged value of it. Thus
the formulation using feedback in which the instaebus state is monitored seems to be
more effective that one in which recent valueshef abjective itself are used as the basis of

control.

5. CONCLUSIONS

This paper has formulated signal control for roadfic within the framework of optimal
control theory. By reference to this general foratioh, the importance is discussed of

appropriate treatments for different kinds of vility in traffic. A review of the literature
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shows how various optimisation approaches can batifted within this formulation as

corresponding to treatments of combinations ofdhesds of variability.

The kinds of traffic detector data that are cuilyemtvailable and for which there is a

reasonable prospect do not generally correspoditéot observations of the state variables of
the traffic system. There is an established recdraeuristic traffic control systems that use
the raw data in operational rules that succeedirirolling road traffic. However, detector

data require careful interpretation if they areb®used in optimisation formulations. As a
distinct alternative approach, the detector data #ne available can be used in raw form
together with rules that are generated automatitalachieve good control performance. The
way in which each of these approaches is develapddrther detector data become available

will influence the style, if not the objectives, @§nal control operations in the future.

The optimal control framework that is presentedeheas the feature that it can be applied
using data in varying quantity and quality, accogdio their availability. On general grounds,

one could reasonably expect that the greater tlhetiy and quality of data, the better the
performance that can be achieved. To a certaimgxay formal optimisation procedure can
be identified within this framework. The interegjilssue arises in practical application of
whether with a certain availability of data, thefpemance that can be achieved by an explicit
optimal control formulation exceeds that that canalshieved by either a heuristic approach
or an automated learning one. This is a matteinfggstigation, with the expectation that as
the quantity and quality of available data increas® the balance of traffic control will

develop from heuristics towards optimal controhfotations.
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Figure 3: Sources of data for feedforward contfdraffic signals
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Figure 4: Nature of data from an upstream detector.



Operational

Automatic
Learning
Systen

Signal
Control

A

Rules
Detector
Data
Traffic
Simulation
Performance

Reward

Figure 5: Structure of an automated learning syste traffic signal control

32




